Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3135–3150 | Cite as

Effect of iron doping on SO2 and H2O resistance of honeycomb cordierite-based Mn–Ce/Al2O3 catalyst for NO removal at low temperature

  • Cheng-zhi Wang
  • Yong-gang Zhao
  • Cheng Zhang
  • Xin Yan
  • Peng Cao
Article
  • 151 Downloads

Abstract

Honeycomb cordierite-based Mn–Ce/Al2O3 (Mn–Ce/Al2O3–C) and Fe–Mn–Ce/Al2O3 (Fe–Mn–Ce/Al2O3–C) catalysts were prepared by an impregnation method and investigated in low-temperature selective catalytic reduction (SCR) of NO with NH3 at 100 °C. The Fe–Mn–Ce/Al2O3–C catalyst exhibited not only higher catalytic activity, but also much better SO2 and H2O resistance in the presence of 30 ppm SO2 and/or 5 vol% H2O than Mn–Ce/Al2O3–C. After doping Fe, the NO conversion of Mn–Ce/Al2O3–C catalyst displayed an increasing trend from 79 to 84% in the absence of SO2 and H2O at 100 °C under a gas hour space velocity of 1667 h−1. The results of characterization indicated that addition of Fe was advantageous to increase BET surface area, pore volume and inhibit loss of surface Mn and Ce species. Additionally, it was helpful for generating higher concentration of Mn4+, more chemisorbed oxygen and more uniform dispersion of amorphous Mn and Ce in the surface of catalyst, which were beneficial to interact with reactants. Furthermore, in contrast to Mn–Ce/Al2O3–C, the SCR activity of Fe–Mn–Ce/Al2O3–C catalyst in the presence of H2O, SO2 and H2O and SO2 were 79, 75 and 64%, with the increase of 14, 18 and 19%, respectively. It is indicated that the addition of Fe could inhibit sulfate formation and thus enhance SO2 resistance. XPS results reveal that the doping of Fe into the ceria lattice led to some Ce4+ transferred into Ce3+ in order to maintain the electrical neutrality, thereby facilitating the reduction of Ce4+ → Ce3+ and the formation of oxygen vacancies. NH3 temperature-programmed desorption (TPD) results imply that the doping of Fe onto Mn–Ce/Al2O3–C can remarkably improve the distribution and concentration of acid sites. All the above factors contributed to the improvement of overall NH3 SCR performance of the Fe–Mn–Ce/Al2O3–C catalyst compared with that of the Mn–Ce/Al2O3–C catalyst.

Keywords

Low-temperature selective catalytic reduction SO2 resistance Honeycomb cordierite Mn–Ce/Al2O3 catalyst Fe doping 

Notes

Acknowledgements

The project is financially supported by the National High Technology Research and Development Program of China (2015AA03A401).

Supplementary material

11164_2018_3297_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1138 kb)

References

  1. 1.
    Q. Zhao, J. Xiang, L. Sun, S. Su, S. Hu, Energy Fuels 23(3), 1539 (2009)CrossRefGoogle Scholar
  2. 2.
    Z. Liu, J. Zhu, S. Zhang, L. Ma, S.I. Woo, Catal. Commun. 46(5), 90 (2014)Google Scholar
  3. 3.
    Z. Ma, H. Yang, L. Qian, J. Zheng, X. Zhang, Appl. Catal. A 427–428(10), 43 (2012)CrossRefGoogle Scholar
  4. 4.
    L. Li, L. Zhang, K. Ma, W. Zou, Y. Cao, Y. Xiong, C. Tang, L. Dong, Appl. Catal. B 207, 366 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Min, E.D. Park, M.K. Ji, J.E. Yie, Appl. Catal. A 327(2), 261 (2007)CrossRefGoogle Scholar
  6. 6.
    R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu, Catal. Today 153(3–4), 84 (2010)CrossRefGoogle Scholar
  7. 7.
    S.T. Choo, S.D. Yim, I.S. Nam, S.W. Ham, J.B. Lee, Appl. Catal. B 44(3), 237 (2003)CrossRefGoogle Scholar
  8. 8.
    X. Tang, J. Hao, H. Yi, J. Li, Catal. Today 126(3), 406 (2005)Google Scholar
  9. 9.
    J.H. Song, X.L. Tang, H.H. Yi, P. Ning, K. Li, Q.F. Yu, D. He, Adv. Mater. Res. 219–220, 1472 (2011)CrossRefGoogle Scholar
  10. 10.
    Y.J. Kim, H.J. Kwon, I.S. Nam, W.C. Jin, J.K. Kil, H.J. Kim, M.S. Cha, G.K. Yeo, Catal. Today 151(3–4), 244 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Tang, H. Zhang, L. Dong, Catal. Sci. Technol. 6(5), 1248 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Yue, T. Gu, X. Weng, W. Yan, Z. Wu, H. Wang, J. Phys. Chem. A 116(31), 16582 (2012)CrossRefGoogle Scholar
  13. 13.
    F. Cao, J. Xiang, S. Su, P. Wang, S. Hu, L. Sun, Fuel Process. Technol. 135, 66 (2015)CrossRefGoogle Scholar
  14. 14.
    B. Murugan, A.V. Ramaswamy, D. Srinivas, C.S. Gopinath, V. Ramaswamy, Chem. Mater. 17(15), 3983 (2005)CrossRefGoogle Scholar
  15. 15.
    T.Y. Li, S.J. Chiang, B.J. Liaw, Y.Z. Chen, Appl. Catal. B 103(1–2), 143 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Yang, C. Wang, J. Li, N. Yan, L. Ma, H. Chang, Appl. Catal. B 110(41), 71 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Fan, S. Sheng, J. Xiang, P. Wang, H. Song, L. Sun, A. Zhang, Fuel 139, 232 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Qi, R.T. Yang, Appl. Catal. B 44(3), 217 (2003)CrossRefGoogle Scholar
  19. 19.
    J.L. Williams, Catal. Today 69(1), 3 (2001)CrossRefGoogle Scholar
  20. 20.
    Z. Lei, L. Li, C. Yuan, X. Yao, C. Ge, G. Fei, D. Yu, C. Tang, D. Lin, Appl. Catal. B 165(18), 589 (2015)Google Scholar
  21. 21.
    S. Cai, H. Hu, H. Li, L. Shi, D. Zhang, Nanoscale 8(6), 3588 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Khan, P.G. Smirniotis, J. Mol. Catal. A: Chem. 280(1–2), 43 (2008)CrossRefGoogle Scholar
  23. 23.
    W. Xu, H. He, Y. Yu, J. Phys. Chem. C 113(11), 4426 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, C.Z. Ge, L. Zhan, C. Li, W. Qiao, L. Ling, Ind. Eng. Chem. Res. 51(36), 11667 (2012)CrossRefGoogle Scholar
  25. 25.
    J.R. González-Velasco, R. Ferret, R. López-Fonseca, M.A. Gutiérrez-Ortiz, Powder Technol. 153(1), 34 (2005)CrossRefGoogle Scholar
  26. 26.
    J. Han, J. Meeprasert, P. Maitarad, S. Nammuangruk, L. Shi, D. Zhang, J. Phys. Chem. C 120(3), 1523 (2016)CrossRefGoogle Scholar
  27. 27.
    X. Yao, T. Kong, S. Yu, L. Li, F. Yang, L. Dong, Appl. Surf. Sci. 402, 208 (2017)CrossRefGoogle Scholar
  28. 28.
    Z.H. Chen, X.H. Li, Q. Yang, H. Li, X. Gao, Y.B. Jiang, F.R. Wang, L.F. Wang, Acta Phys. Chim. Sin. 25(4), 601 (2009)Google Scholar
  29. 29.
    P. Venkataswamy, D. Jampaiah, K.N. Rao, B.M. Reddy, Appl. Catal. A 488, 1 (2014)CrossRefGoogle Scholar
  30. 30.
    X. Nie, X. Li, C. Du, Y. Huang, H. Du, J. Raman Spectrosc. 40(1), 76 (2009)CrossRefGoogle Scholar
  31. 31.
    L.J. France, Q. Yang, W. Li, Z. Chen, J. Guang, D. Guo, L. Wang, X. Li, Appl. Catal. B 206, 203 (2017)CrossRefGoogle Scholar
  32. 32.
    Z. Wu, R. Jin, H. Wang, Y. Liu, Catal. Commun. 10(6), 935 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Romeo, K. Bak, J. El Fallah, F.L. Normand, L. Hilaire, Surf. Interface Anal. 20(6), 508 (1993)CrossRefGoogle Scholar
  34. 34.
    S. Ramana, B.G. Rao, P. Venkataswamy, A. Rangaswamy, B.M. Reddy, J. Mol. Catal. A: Chem. 415, 113 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Watanabe, X. Ma, C. Song, J. Phys. Chem. C 113(32), 14249 (2009)CrossRefGoogle Scholar
  36. 36.
    C.R.A. Catlow, J. Chem. Soc., Faraday Trans. 86(8), 1167 (1990)CrossRefGoogle Scholar
  37. 37.
    T. Gu, Y. Liu, X. Weng, H. Wang, Z. Wu, Catal. Commun. 12(4), 310 (2011)CrossRefGoogle Scholar
  38. 38.
    D.A. Peña, B.S. Uphade, P.G. Smirniotis, J. Catal. 221(2), 421 (2004)CrossRefGoogle Scholar
  39. 39.
    A.M. Venezia, G.D. Carlo, G. Pantaleo, L.F. Liotta, G. Melaet, N. Kruse, Appl. Catal. B 88(3), 430 (2009)CrossRefGoogle Scholar
  40. 40.
    F. Kapteijn, L. Singoredjo, A. Andreini, J.A. Moulijn, Cheminform 3(2–3), 173 (1994)Google Scholar
  41. 41.
    X. Tang, J. Li, S. Liang, J. Hao, Appl. Catal. B 99(1), 156 (2010)CrossRefGoogle Scholar
  42. 42.
    Y. Xiong, C. Tang, X. Yao, L. Zhang, L. Li, X. Wang, Y. Deng, F. Gao, L. Dong, Appl. Catal. A 495(1), 206 (2015)CrossRefGoogle Scholar
  43. 43.
    D. Mukherjee, B.G. Rao, B.M. Reddy, Appl. Catal. B 197, 105 (2016)CrossRefGoogle Scholar
  44. 44.
    H.C. Luo, B.C. Huang, M.L. Fu, J.L. Wu, D.Q. Ye, Acta Phys. Chim. Sin. 28(9), 2175 (2012)Google Scholar
  45. 45.
    F. Liu, H. He, Y. Ding, C. Zhang, Appl. Catal. B 93(1), 3760 (2009)Google Scholar
  46. 46.
    L. Lietti, I. Nova, G. Ramis, L. Dall’Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, J. Catal. 187(2), 419 (1999)CrossRefGoogle Scholar
  47. 47.
    T. Boningari, P.R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C.A. Mcdonald, P.G. Smirniotis, J. Catal. 325, 145 (2015)CrossRefGoogle Scholar
  48. 48.
    D.A. Peña, B.S. Uphade, E.P. Reddy, P.G. Smirniotis, Journal of Physical Chemistry B 108(28), 9927 (2004)CrossRefGoogle Scholar
  49. 49.
    J. Li, Y. Zhu, K. Rui, J. Hao, Appl. Catal. B 80(3), 202 (2008)CrossRefGoogle Scholar
  50. 50.
    L. Chen, J. Li, M. Ge, R. Zhu, Catal. Today 153(3), 77 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Cheng-zhi Wang
    • 1
  • Yong-gang Zhao
    • 1
  • Cheng Zhang
    • 1
  • Xin Yan
    • 2
  • Peng Cao
    • 1
  1. 1.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical EngineeringShihezi UniversityShiheziChina
  2. 2.Tianfu South Thermoelectric Co., Ltd.ShiheziChina

Personalised recommendations