Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: a comparison with Cr- and Ni-doped TiO2

  • Sushil M. Chaudhari
  • Pramod M. Gawal
  • Priyanka K. Sane
  • Sharad M. Sontakke
  • Parag R. Nemade
Article
  • 8 Downloads

Abstract

Highly active Cr-doped, Ni-doped and Mo-doped TiO2 photocatalysts were synthesized by a sol–gel method. The synthesized catalysts were characterized by UV–DRS, BET, XRD, FE-SEM–EDS, TEM and XPS. Metal doping decreased the band gap of TiO2 to 2.83 eV for Mo-doped TiO2 and Ni-doped TiO2. The activity of the synthesized photocatalysts was evaluated by studying the degradation of MB as a model pollutant under both UV and solar irradiation. The Mo/TiO2 catalyst achieved 98% degradation under solar light within 120 min. The activity of the catalysts was in the order Ni-doped TiO2 < Cr-doped TiO2 < TiO2 < Mo-doped TiO2. The optimum activity was found at a loading of 1.5 g/L of Mo-doped TiO2 under both UV and solar irradiation. The degradation was rapid at pH > 7 and followed pseudo-first order kinetics. Degradation by-products were analyzed on HR-LCMS and a mechanism is proposed.

Keywords

Mo-doped TiO2 Cr-doped TiO2 Ni-doped TiO2 Dye degradation MB UV light Visible light 

Supplementary material

11164_2018_3296_MOESM1_ESM.docx (124 kb)
Following electronic supplementary information is available: Elemental analysis of doped TiO2, HRMS of MB dye degradation intermediates. (DOCX 124 kb)

References

  1. 1.
    N. Chekir, O. Benhabiles, D. Tassalit, N.A. Laoufi, F. Bentahar, Desalin. Water Treat. 57, 6141 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Muruganandham, M. Swaminathan, Dyes Pigment 72, 137 (2007)CrossRefGoogle Scholar
  3. 3.
    K. Bubacz, J. Choina, D. Dolat, A.W. Morawski, Pol. J. Environ. Stud 19, 685 (2010)Google Scholar
  4. 4.
    S. Sadri Moghaddam, M.R. Alavi Moghaddam, M. Arami, J Hazard Mater 175, 651 (2010)CrossRefGoogle Scholar
  5. 5.
    L.-G. Wang, G.-B. Yan, Desalination 274, 81 (2011)CrossRefGoogle Scholar
  6. 6.
    L. Zheng, X. Wang, X. Wang, J. Clean Prod. 108, 525 (2015)CrossRefGoogle Scholar
  7. 7.
    J.H.B. Rocha, M.M.S. Gomes, E.V. dos Santos, E.C.M. de Moura, D.R. da Silva, M.A. Quiroz, C.A. Martínez-Huitle, Electrochim. Acta 140, 419 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Ali, Water Air Soil Pollut. 213, 251 (2010)CrossRefGoogle Scholar
  9. 9.
    G.G. Bessegato, J.C. Cardoso, B.F. da Silva, M.V.B. Zanoni, Appl. Catal. B Environ. 180, 161 (2016)CrossRefGoogle Scholar
  10. 10.
    P. Liang, M. Rivallin, S. Cerneaux, S. Lacour, E. Petit, M. Cretin, J. Membr. Sci. 510, 182 (2016)CrossRefGoogle Scholar
  11. 11.
    B. Brunekreef, S.T. Holgate, The Lancet 360, 1233 (2002)CrossRefGoogle Scholar
  12. 12.
    M. Anpo, M. Takeuchi, J. Catal. 216, 505 (2003)CrossRefGoogle Scholar
  13. 13.
    S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147, 1 (2009)CrossRefGoogle Scholar
  14. 14.
    M.I. Litter, Appl. Catal. B Environ. 23, 89 (1999)CrossRefGoogle Scholar
  15. 15.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B Environ. 125, 331 (2012)CrossRefGoogle Scholar
  16. 16.
    Ö. Kerkez-Kuyumcu, E. Kibar, K. Dayıoğlu, F. Gedik, A.N. Akın, Ş. Özkara-Aydınoğlu, J. Photochem. Photobiol. Chem. 311, 176 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Huang, X. Guo, B. Wang, L. Li, M. Zhao, L. Dong, X. Liu, Y. Huang, J. Spectrosc. 2015, e681850 (2015)Google Scholar
  18. 18.
    S.N.R. Inturi, T. Boningari, M. Suidan, P.G. Smirniotis, Appl. Catal. B Environ. 144, 333 (2014)CrossRefGoogle Scholar
  19. 19.
    G. M. Madhu, A. Raj, M. A. Lourdu, K. V. K. Pai, and S. Rao, IJCT Vol142 March 2007 (2007)Google Scholar
  20. 20.
    S. Zhang, Y. Chen, Y. Yu, H. Wu, S. Wang, B. Zhu, W. Huang, S. Wu, J. Nanoparticle Res. 10, 871 (2008)CrossRefGoogle Scholar
  21. 21.
    K. Yu, M. Song, X. Gao, C. Hou, J. Liang, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45, 1576 (2015)CrossRefGoogle Scholar
  22. 22.
    L. Gomathi Devi, B. Narasimha Murthy, S. Girish Kumar, Chemosphere 76, 1163 (2009)CrossRefGoogle Scholar
  23. 23.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
  24. 24.
    S.-Y. Luo, B.-X. Yan, J. Shen, Thin Solid Films 522, 361 (2012)CrossRefGoogle Scholar
  25. 25.
    H. Khan, D. Berk, J. Photochem. Photobiol. Chem. 294, 96 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Yang, X. Li, J. Chen, L. Wang, J. Photochem. Photobiol. Chem. 163, 517 (2004)CrossRefGoogle Scholar
  27. 27.
    S. Wang, L.N. Bai, H.M. Sun, Q. Jiang, J.S. Lian, Powder Technol. 244, 9 (2013)CrossRefGoogle Scholar
  28. 28.
    Y.-L. Wei, K.-W. Chen, H.P. Wang, J. Nanosci. Nanotechnol. 10, 5456 (2010)CrossRefGoogle Scholar
  29. 29.
    M. Prekajski, A. Zarubica, B. Babić, B. Jokić, J. Pantić, J. Luković, B. Matović, Ceram. Int. 42, 1862 (2016)CrossRefGoogle Scholar
  30. 30.
    G.G. Nakhate, V.S. Nikam, K.G. Kanade, S. Arbuj, B.B. Kale, J.O. Baeg, Mater. Chem. Phys. 124, 976 (2010)CrossRefGoogle Scholar
  31. 31.
    K. Tan, H. Zhang, C. Xie, H. Zheng, Y. Gu, W.F. Zhang, Catal. Commun. 11, 331 (2010)CrossRefGoogle Scholar
  32. 32.
    R. Vijayalaxmi, V. Rajendran, Arch. Appl. Sci. Res. 4, 1183 (2012)Google Scholar
  33. 33.
    S. Tambat, S. Umale, S. Sontakke, Mater. Res. Bull. 76, 466 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Li and P. Jena, Phys. Rev. B 79, (2009)Google Scholar
  35. 35.
    D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)CrossRefGoogle Scholar
  36. 36.
    L. Yuan, X. Weng, M. Zhou, Q. Zhang, L. Deng, Nanoscale Res. Lett. 12, 597 (2017)CrossRefGoogle Scholar
  37. 37.
    R.S. Dubey, S. Singh, Results Phys. 7, 1283 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Majeed, C. Nayak, S.N. Jha, K. Bhattacharyya, D. Bhattacharyya, A.K. Tripathi, RSC Adv. 5, 90932 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, and J. Ye, Adv. Mater. 29, 1701774 (2017)CrossRefGoogle Scholar
  40. 40.
    H. Zhu, J. Tao, X. Dong, J. Phys. Chem. C 114, 2873 (2010)CrossRefGoogle Scholar
  41. 41.
    B. Brox, I. Olefjord, Surf. Interface Anal. 13, 3 (1988)CrossRefGoogle Scholar
  42. 42.
    E. Agostinelli, C. Battistoni, D. Fiorani, G. Mattogno, M. Nogues, J. Phys. Chem. Solids 50, 269 (1989)CrossRefGoogle Scholar
  43. 43.
    Y.-H. Peng, G.-F. Huang, W.-Q. Huang, Adv. Powder Technol. 23, 8 (2012)CrossRefGoogle Scholar
  44. 44.
    E. Alzahrani, Am. J. Anal. Chem. 8, 95 (2017)CrossRefGoogle Scholar
  45. 45.
    T. van der Meulen, A. Mattson, L. Österlund, J. Catal. 251, 131 (2007)CrossRefGoogle Scholar
  46. 46.
    W.R. Siah, H.O. Lintang, M. Shamsuddin, L. Yuliati, I.O.P. Conf, Ser. Mater. Sci. Eng. 107, 012005 (2016)Google Scholar
  47. 47.
    A. Kafizas, C.J. Carmalt, I.P. Parkin, Chem.-Eur. J. 18, 13048 (2012)CrossRefGoogle Scholar
  48. 48.
    M. Boehme, W. Ensinger, Nano-Micro Lett. 3, 236 (2011)CrossRefGoogle Scholar
  49. 49.
    H. Hassena, Mod. Chem. Appl. 4, (2016)Google Scholar
  50. 50.
    J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, Y. Xu, Chin. J. Catal. 36, 2049 (2015)CrossRefGoogle Scholar
  51. 51.
    M. Ahsan Habib, I.M.I. Ismail, A.J. Mahmood, M. Rafique Ullah, J. Saudi, Chem Soc 16, 423 (2012)Google Scholar
  52. 52.
    P. Nuengmatcha, S. Chanthai, R. Mahachai, W.-C. Oh, Dyes Pigments 134, 487 (2016)CrossRefGoogle Scholar
  53. 53.
    S.K. Kansal, N. Kaur, S. Singh, Nanoscale Res. Lett. 4, 709 (2009)CrossRefGoogle Scholar
  54. 54.
    A. Daya Mani, B. Rama Raju, N. Xanthopoulos, P. Ghosal, B. Sreedhar, C. Subrahmanyam, Chem. Eng. J. 228, 545 (2013)CrossRefGoogle Scholar
  55. 55.
    R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Opt. Int. J. Light Electron Opt. 127, 7143 (2016)CrossRefGoogle Scholar
  56. 56.
    J. Sun, X. Wang, J. Sun, R. Sun, S. Sun, L. Qiao, J. Mol. Catal. Chem. 260, 241 (2006)CrossRefGoogle Scholar
  57. 57.
    U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009)CrossRefGoogle Scholar
  58. 58.
    K.M. Reza, A.S.W. Kurny, F. Gulshan, Appl. Water Sci. 1 (2015)Google Scholar
  59. 59.
    R.M. Mohamed, I.A. Mkhalid, E.S. Baeissa, M.A. Al-Rayyani, J. Nanotechnol. 2012, e329082 (2012)Google Scholar
  60. 60.
    A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B Environ. 31, 145 (2001)CrossRefGoogle Scholar
  61. 61.
    G.S. Singhal, E. Rabinowitch, J. Phys. Chem. 71, 3347 (1967)CrossRefGoogle Scholar
  62. 62.
    O. Avilés-García, J. Espino-Valencia, R. Romero, J.L. Rico-Cerda, M. Arroyo-Albiter, R. Natividad, Fuel 198, 31 (2017)CrossRefGoogle Scholar
  63. 63.
    G. Ibram, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmananbham, G. Sundararajan, Sci. World J. 2012, 1 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Department of Oils, Oleochemicals and Surfactant TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations