Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3081–3095 | Cite as

Enhanced photocatalytic degradation of methyl orange using ZnO/graphene oxide nanocomposites

  • Van Noi Nguyen
  • Dinh Trinh Tran
  • Manh Tuong Nguyen
  • Thi Thanh Thuy Le
  • Minh Ngoc Ha
  • Minh Viet Nguyen
  • Thanh Dong Pham


ZnO/graphene oxide (ZnO/GO) nanocomposites were synthesized by hydrothermal method using zinc acetate and graphite as precursors. Properties of synthesized materials were investigated by different physico-chemical techniques and their photocatalytic performance was evaluated with the aid of the photodegradation of methyl orange under UV irradiation. Impacts of reaction conditions such as pH of solutions, catalyst loading and initial concentration on photodegradation rate of synthesized photocatalysts were also investigated. TEM images showed that the average size of the synthesized ZnO was approximately 35 nm, being in good agreement with the obtained XRD results which revealed good dispersion of ZnO particles over the wrinkled GO layers. UV–Vis absorption spectra of these synthesized materials revealed that 5% ZnO/GO exhibited the highest visible light absorption. Photocatalytic experimental results showed that the highest photodegradation rates occurred in a neutral solution with an initial methyl orange (MO) concentration of 10 mg/L. After 2 h of reaction under UV irradiation, more than 95% of MO was degraded at optimal conditions. The photodegradation of MO followed the pseudo-first-order kinetics with apparent reaction rate constants in the range of 0.009–0.030 (min−1). ZnO/GO photocatalyst was relatively stable in neutral aqueous solutions during the photodegradation of MO, with a decrease of 6% in photocatalytic performance observed after four cycles compared with the first cycle.


ZnO/GO nanocomposites Enhanced photocatalytic performance Methyl orange First-order kinetics 



This research was funded by the Vietnam National University, Hanoi (VNU), under project number QG.16.21.

Supplementary material

11164_2018_3294_MOESM1_ESM.docx (393 kb)
Supplementary material 1 (DOCX 393 kb)


  1. 1.
    C. Lavanya, R. Dhankar, S. Chhikara, S. Sheoran, Int. J. Curr. Microbiol. Appl. Sci. 3, 189 (2014)Google Scholar
  2. 2.
    S.T. Ong, P.S. Keng, W.N. Lee, S.T. Ha, Y.T. Hung, Water 3, 157 (2011)CrossRefGoogle Scholar
  3. 3.
    D. Chatterjee, S. Dasgupt, J. Photochem. Photobiol. C 6, 186 (2005)CrossRefGoogle Scholar
  4. 4.
    N. Talebian, S.M. Amininezhad, M. Doudi, J. Photochem. Photobiol. B 120, 66 (2013)CrossRefGoogle Scholar
  5. 5.
    L. Zhong, K. Yun, Int. J. Nanomed. 10, 79 (2015)Google Scholar
  6. 6.
    A. Yu, J. Qian, H. Pan, Y. Cui, M. Xu, L. Tu, Q. Chai, X. Zhou, Sensor Actuat. B-Chem. 158, 9 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Seo, Y. Jung, D. Lim, D. Cho, Y. Jeong, Mater. Lett. 92, 177 (2013)CrossRefGoogle Scholar
  8. 8.
    R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Solid State Ion. 151, 235 (2002)CrossRefGoogle Scholar
  9. 9.
    C. Zhang, Mater. Sci. Semicond. Process. 10, 215 (2007)CrossRefGoogle Scholar
  10. 10.
    Q. Xiao, L.L. Ouyang, J. Alloys Compd. 479, L4 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Purica, E. Budianu, E. Rusu, Thin Solid Films 383, 284 (2001)CrossRefGoogle Scholar
  12. 12.
    T.J. Kuo, C.N. Lin, C.L. Kuo, M.H. Huang, Chem. Mater. 19, 5143 (2007)CrossRefGoogle Scholar
  13. 13.
    P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Chem. Eng. J. 171, 136 (2011)CrossRefGoogle Scholar
  14. 14.
    S.Q. Wei, Z.C. Shao, X.D. Lu, Y. Liu, L.L. Cao, Y. He, J. Environ. Sci. 21, 991 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Azarang, A. Shuhaimi, R. Yousefi, A.M. Golsheikh, M. Sookhakian, Ceram. Int. 40, 10217 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Xu, L. Zhang, H. Cheng, Y. Zhu, Appl. Catal. B 101, 382 (2011)CrossRefGoogle Scholar
  17. 17.
    Z.S. Tian, S. Bai, K. Cao, J. Li, Mater. Express 6, 437 (2016)CrossRefGoogle Scholar
  18. 18.
    D. Li, W. Wu, Y. Zhang, L. Liu, C. Pan, J. Mater. Sci. 49, 1854 (2014)CrossRefGoogle Scholar
  19. 19.
    J.O. Hwang, D.H. Lee, J. Mater. Chem. 21, 3432 (2011)CrossRefGoogle Scholar
  20. 20.
    N. Jain, A. Bhargava, J. Panwar, Chem. Eng. J. 243, 549 (2014)CrossRefGoogle Scholar
  21. 21.
    J.P.M. Li, G.P. Wang, R.K. Paul, J.B. Zhong, X.Y. Jing, M. Ozkan, C.S. Ozknan, Small 6, 2448 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Rai, N.J.I.E. Thomas, D. Karthikeyan, Y.R. Lee, J. Photochem. Photobiol. B 162, 500 (2016)CrossRefGoogle Scholar
  23. 23.
    K.B. Ravi, P.K. Giri, S. Dhara, K. Imakita, M. Fujii, ACS Appl Mater. Interfaces 6, 377 (2014)CrossRefGoogle Scholar
  24. 24.
    S.Y. Gao, X.X. Jia, S.X. Yang, Z.D. Li, K. Jiang, J. Solid State Chem. 184, 764 (2011)CrossRefGoogle Scholar
  25. 25.
    T.K. Jia, W.M. Wang, F. Long, Z.Y. Fu, H. Wang, Q.J. Zhang, J. Alloys Compd. 484, 410 (2009)CrossRefGoogle Scholar
  26. 26.
    J.Z. Kong, A.D. Li, H.F. Zhai, Y.P. Gong, H. Li, D. Wu, J. Solid State Chem. 182, 2061 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Pyne, G.P. Sahoo, D.K. Bhui, H. Ba, P. Sarkar, S. Samanta, A. Maity, A. Misra, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93, 100 (2015)CrossRefGoogle Scholar
  28. 28.
    J.H. Sun, S.Y. Dong, J.L. Feng, X.J. Yin, X.C. Zhao, J. Mol. Catal. A: Chem. 335, 145 (2011)CrossRefGoogle Scholar
  29. 29.
    B. Thongrom, P. Amornpitoksuk, S. Suwanboon, J. Baltrusaitis, Korean J. Chem. Eng. 31, 587 (2014)CrossRefGoogle Scholar
  30. 30.
    Z. Barzgar, A. Ghazizadeh, S.Z. Askari, Res. Chem. Intermed. 42, 4303 (2016)CrossRefGoogle Scholar
  31. 31.
    C.L. Yu, K. Yang, Y. Xie, Q. Fan, J.C. Yu, Q. Shu, C. Wang, Nanoscale 5, 2142 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Ahmad, M. Kharkwal, D. Govin, R. Nagarajan, J. Phys. Chem. C 115, 10131 (2011)CrossRefGoogle Scholar
  33. 33.
    F.B. Bouaifel, B. Sieber, N. Bezzi, J. Benner, P. Roussel, L. Boussekey, S. Szunerits, R. Boukherroub, J. Mater. Chem. 21, 10982 (2011)CrossRefGoogle Scholar
  34. 34.
    S.F. Chen, W. Zhao, S.J. Zhang, W. Liu, Chem. Eng. J. 148, 263 (2009)CrossRefGoogle Scholar
  35. 35.
    S.W. Liu, C. Li, J.G. Yu, Q.J. Xiang, Cryst. Eng. Commun. 13, 2533 (2011)CrossRefGoogle Scholar
  36. 36.
    X.J. Wang, S.W. Yao, X.B. Li, Chin. J. Chem. 27, 1317 (2009)CrossRefGoogle Scholar
  37. 37.
    L.P. Zhu, G.H. Liao, W.Y. Huang, L.L. Ma, Y. Yang, Y. Yu, S.Y. Fu, Mater. Sci. Eng. B 163, 194 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Mu, C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang, B. Chen, Y. Liu, ACS Appl Mater. Interfaces 3, 590 (2011)CrossRefGoogle Scholar
  39. 39.
    Y. Yan, T. Chang, P.C. Wei, S.Z. Kang, J. Mu, J. Dispersion Sci. Technol. 30, 198 (2009)CrossRefGoogle Scholar
  40. 40.
    P. Wang, Y. Zhai, D. Wang, S. Dong, Nanoscale 3, 1640 (2011)CrossRefGoogle Scholar
  41. 41.
    J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Langmuir 24, 10560 (2008)CrossRefGoogle Scholar
  42. 42.
    N. Goswami, D.K. Sharma, Phys. E Low Dimens. Syst. Nanostruct. 42, 1675 (2010)CrossRefGoogle Scholar
  43. 43.
    D.I. Son, H.Y. Yang, T.W. Kim, W.I. Park, Appl. Phys. Lett. 102, 021105 (2013)CrossRefGoogle Scholar
  44. 44.
    A.A. Ismail, A. El-Midany, E.A. Abdel-Aal, H. El-Shall, Mater. Lett. 59, 1924 (2005)CrossRefGoogle Scholar
  45. 45.
    N.M. Huang, H.N. Lim, C.H. Chia, M.A. Yarmo, M.R. Muhamad, Int. J. Nanomedicine 6, 3443 (2011)CrossRefGoogle Scholar
  46. 46.
    S. Xua, L. Fu, T.S.H. Pham, A. Yu, F. Han, L. Chen, Ceram. Int. 41, 4007 (2015)CrossRefGoogle Scholar
  47. 47.
    Q. Zhu, J. Chen, Q. Zhu, Y. Cui, L. Liu, B. Li, X. Zhou, Mater. Res. Bull. 45, 2024 (2015)CrossRefGoogle Scholar
  48. 48.
    M. Zare, S. Safa, R. Azimirad, S. Mokhtari, J. Mater. Sci. Mater. Electron. 28, 6919 (2017)CrossRefGoogle Scholar
  49. 49.
    T.G. Xu, L.W. Zhang, H.Y. Cheng, Y.F. Zhu, Appl. Catal. B: Environ. 101, 382 (2011)CrossRefGoogle Scholar
  50. 50.
    X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C. Sun, Chem. Eng. Commun. 183, 238 (2012)Google Scholar
  51. 51.
    A. Piscopo, D. Robert, J.V. Weber, Appl. Catal. B 35, 117 (2001)CrossRefGoogle Scholar
  52. 52.
    R. Beura, P. Thangadurai, J. Phys. Chem. Solids 102, 168 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Azimi, A.R. Nezamzadeh-Ejhieh, J. Mol. Catal. A: Chem. 408, 152 (2015)CrossRefGoogle Scholar
  54. 54.
    F. Saadati, N. Keramati, M.M. Ghazi, Crit. Rev. Env. Sci. Technol. 46, 757 (2016)CrossRefGoogle Scholar
  55. 55.
    X. Chen, Z. Wu, D. Liu, Z. Gao, Nanoscale Res. Lett. 12, 143 (2017)CrossRefGoogle Scholar
  56. 56.
    H. He, S. Xue, Z. Wu, C. Yu, K. Yang, G. Peng, W. Zhou, D. Li, Chin. J. Catal. 37, 1841 (2016)CrossRefGoogle Scholar
  57. 57.
    C. Yu, Z. Wu, R. Liu, D.D. Dionysiou, K. Yang, C. Wang, H. Liu, Appl. Catal. B 209, 1 (2017)CrossRefGoogle Scholar
  58. 58.
    J. Kaur, S. Bansal, S. Singhal, Phys. B 416, 33 (2013)CrossRefGoogle Scholar
  59. 59.
    C. Chen, J. Liu, P. Liu, B. Yu, J. Adv. Chem. Eng. Sci. 1, 9 (2011)CrossRefGoogle Scholar
  60. 60.
    S. Apollo, S. Moyo, G. Mabuoa, O. Aoyi, Int. J. Innov. Manage. Technol. 5, 203 (2014)Google Scholar
  61. 61.
    H.Y. He, W.X. Dong, G.H. Zhang, Res. Chem. Intermed. 36, 995 (2010)CrossRefGoogle Scholar
  62. 62.
    H. Naderpour, M. Noroozifar, M. Khorasani-Motlagh, J. Iran. Chem. Soc. 10, 471 (2013)CrossRefGoogle Scholar
  63. 63.
    X. Sun, W. Luo, L. Chen, L. Zheng, C. Bao, P. Sun, N. Huang, Y. Sun, L. Fang, L. Wang, RSC Adv. 6, 2241 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Van Noi Nguyen
    • 1
  • Dinh Trinh Tran
    • 1
  • Manh Tuong Nguyen
    • 2
  • Thi Thanh Thuy Le
    • 3
  • Minh Ngoc Ha
    • 1
  • Minh Viet Nguyen
    • 1
  • Thanh Dong Pham
    • 1
  1. 1.VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of ChemistryVietnam National UniversityHanoiVietnam
  2. 2.Institute of Chemistry - MaterialVietnam Academy of Military Science and TechnologyHanoiVietnam
  3. 3.Department of ChemistryQuy Nhon UniversityQui Nhon CityVietnam

Personalised recommendations