Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3017–3030 | Cite as

Synthesis of anatase/brookite TiO2–Bi2WO6 multiheterojunction and its photocatalytic properties under visible-light irradiation

  • Meihong Zhang
  • Yuqian Fang
  • Yin Zhao
  • Zhuyi Wang
  • Liyi Shi
  • Jianping Zhang
  • Shuai Yuan


Anatase/brookite TiO2–Bi2WO6 multiheterojunction photocatalyst (TabB) has been synthesized via solvothermal method and its physiochemical properties compared with anatase TiO2–Bi2WO6 (TaB) and brookite TiO2–Bi2WO6 (TbB) with single-heterojunction structure. Based on X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) analyses, a heterojunction was formed between TiO2 and Bi2WO6 crystals. All of the TaB, TbB, and TabB samples consisted of free plate-like Bi2WO6 particles covered by many TiO2 nanoparticles. Compared with pure TiO2 (anatase and brookite), the absorption band edge of TabB was red-shifted and the bandgap decreased. The photocatalytic activity of the as-prepared samples under visible-light irradiation was investigated using rhodamine B (RhB), revealing photocatalytic activity in the order TabB > TaB > TbB. The heterojunction structure played a vital role in enhancing charge carrier separation and thus enhancing the photocatalytic activity. The related mechanism of the heterojunction photocatalyst is systematically discussed.


Anatase/brookite TiO2–Bi2WO6 multiheterojunction Interface structure Carrier separation Photocatalytic activity 



The authors acknowledge support from the National Public Research Senior Scholars and Visiting Scholars Project (no. 201706895007), National Natural Science Foundation of China (51472154), Shanghai Municipal Science and Technology Commission (16595800500), Shanghai Municipal Education Commission (Peak Discipline Construction Program), National Key Technology Research and Development Program of the Ministry of Science and Technology of China (no. 2014BAE12B02), and Yunnan Province Science and Technology Cooperation Project (2015IB009).


  1. 1.
    X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  2. 2.
    K. Yasutaka, H. Yamashita, J. Mater. Chem. 21, 2407 (2011)CrossRefGoogle Scholar
  3. 3.
    D. Nasuhoglu, V. Yargeau, D. Berk, J. Hazard. Mater. 186, 67 (2011)CrossRefGoogle Scholar
  4. 4.
    M.H. Zhang, S. Yuan, Z.Y. Wang, Y. Zhao, L.Y. Shi, Appl. Catal. B 134–135, 185 (2013)CrossRefGoogle Scholar
  5. 5.
    Q.C. Xu, Y.H. Ng, Y. Zhang, J.S. Loo, R. Amal, T.T. Tan, Chem. Commun. 47, 8641 (2011)CrossRefGoogle Scholar
  6. 6.
    G. Colon, S.M. Lopez, M.C. Hidalgo, J.A. Navio, Chem. Commun. 46, 4809 (2010)CrossRefGoogle Scholar
  7. 7.
    R. Marschall, Adv. Funct. Mater. 24, 2421 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43, 5234 (2014)CrossRefGoogle Scholar
  9. 9.
    N. Serpone, E. Borgarello, M. Grätzel, J. Chem. Soc. Chem. Commun. 6, 342 (1984)CrossRefGoogle Scholar
  10. 10.
    L. Spanhel, H. Weller, A. Henglein, J. Am. Chem. Soc. 109, 6632 (1987)CrossRefGoogle Scholar
  11. 11.
    I. Bedja, P.V. Kamat, J. Phys. Chem. 99, 9182 (1995)CrossRefGoogle Scholar
  12. 12.
    K. Vinodgopal, I. Bedja, P.V. Kamat, Chem. Mater. 8, 2180 (1996)CrossRefGoogle Scholar
  13. 13.
    N. Helaïli, Y. Bessekhouad, A. Bouguelia, M. Trari, J. Hazard. Mater. 168, 484 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Bai, Z. Liu, D.D. Sun, Int. J. Hydrog. Energy 37, 13998 (2012)CrossRefGoogle Scholar
  15. 15.
    W. Smith, H. Fakhouri, J. Pulpytel, S. Mori, R. Grilli, M.A. Baker, F. Arefi Khonsari, J. Phys. Chem. C 116, 15855 (2012)CrossRefGoogle Scholar
  16. 16.
    C. Yang, Y. Huang, F. Li, T. Li, J. Mater. Sci. 51, 1032 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Ratova, P.J. Kelly, G.T. West, L. Tosheva, M. Edge, Appl. Surf. Sci. 392, 590 (2017)CrossRefGoogle Scholar
  18. 18.
    T.A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D.W. Bahnemann, Chem. Mater. 22(6), 2050 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac et al., J. Mater. Chem. 16(18), 1709 (2006)CrossRefGoogle Scholar
  20. 20.
    W. Yan, B. Chen, S.M. Mahurin, V. Schwartz, D.R. Mullins et al., J. Phys. Chem. B 109(21), 10676 (2005)CrossRefGoogle Scholar
  21. 21.
    J. Li, T. Ishigaki, X. Sun, J. Phys. Chem. C 111(13), 4969 (2007)CrossRefGoogle Scholar
  22. 22.
    T. Ozawa, M. Iwasaki, H. Tada, T. Akita, K. Tanaka, S. Ito, J. Colloid Interface Sci. 281, 510 (2005)CrossRefGoogle Scholar
  23. 23.
    J. Yu, L. Zhang, B. Cheng, Y. Su, J. Phys. Chem. C 111(28), 10582 (2007)CrossRefGoogle Scholar
  24. 24.
    Q. Tay, X. Liu, Y. Tang, Z. Jiang, T.C. Sum, Z. Chen, J. Phys. Chem. C 117, 14973 (2013)CrossRefGoogle Scholar
  25. 25.
    T.A. Kandiel, L. Robben, A. Alkaima, D. Bahnemann, Photochem. Photobiol. Sci. 12, 602 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Zhao, L. Liu, J.M. Andino, Y. Li, J. Mater. Chem. A 1, 8209 (2013)CrossRefGoogle Scholar
  27. 27.
    S.J. Wang, H.L. Yu, S. Yuan, Y. Zhao, Z.Y. Wang, J.H. Fang, Res. Chem. Intermed. 42, 3775 (2016)CrossRefGoogle Scholar
  28. 28.
    L.P. Jiang, S.J. Wang, L.Y. Shi, Y. Zhao, Z.Y. Wang, M.H. Zhang, S. Yuan, Chin. J. Chem. 35(2), 183 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Guo, X. Li, H. Wang, F. Dong, Z. Wu, J. Colloid Interface Sci. 369, 373 (2012)CrossRefGoogle Scholar
  30. 30.
    K.P. Suresh, N.S.A. Syed, J. Sundaramurthy, P. Ragupathy, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, J. Mater. Chem. 21, 9784 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Xu, L. Zhang, J. Phys. Chem. C 113, 1785 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Li, T. Ishigaki, X. Sun, J. Phys. Chem. C 111, 4969 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Murcia-López, M.C. Hidalgo, J.A. Navío, Appl. Catal. A 423–424, 34 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Murcia-López, M.C. Hidalgo, J.A. Navío, G. Colón, J. Hazard. Mater. 185, 1425 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Sun, W. Wang, J. Xu, L. Wang, Z. Zhang, Appl. Catal. B 106, 559 (2011)CrossRefGoogle Scholar
  36. 36.
    G. Li, D. Zhang, J.C. Yu, M.K.H. Leung, Environ. Sci. Technol. 44, 4276 (2010)CrossRefGoogle Scholar
  37. 37.
    L. Zhang, W. Wang, Z. Chen, L. Zhou, H. Xu, W. Zhu, J. Mater. Chem. 17, 2526 (2007)CrossRefGoogle Scholar
  38. 38.
    L. Zhang, H. Wang, Z. Chen, P.K. Wong, J. Liu, Appl. Catal. B 106(1–2), 1 (2011)Google Scholar
  39. 39.
    J. Xu, W. Wang, S. Sun, L. Wang, Appl. Catal. B 111, 126 (2012)CrossRefGoogle Scholar
  40. 40.
    Q. Tay, X. Liu, Y. Tang, Z. Jiang, T.C. Sum, Z. Chen, J. Phys. Chem. C 117, 14973 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center of Nanoscience and NanotechnologyShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations