Skip to main content
Log in

Effect of cobalt loading on suppression of carbon formation in carbon dioxide reforming of methane over Co/MgO catalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Carbon dioxide reforming of methane was studied over Co/MgO catalyst which was prepared by using the direct sol–gel method with different Co loadings. The performance of Co/MgO catalyst was thoroughly investigated over methane (CH4) and carbon dioxide (CO2) conversions, CO and H2 selectivity, syngas ratio (H2:CO) and the rate of carbon deposition. The rate of carbon deposition of Co/MgO catalyst decreased with the lower Co content, which resulted in the formation of small metal crystal size and well distribution. The rate of carbon deposition increased from 0.0016 to 0.2227 gc/gcat h as the Co loadings of Co/MgO catalyst also increased from 10 to 25 mol%. High Co loading formed a weak interaction and larger particles size that promoted the carbon deposition on Co/MgO catalyst during the reaction. The Co/MgO catalyst with 10 mol% of Co loading posed the small particle sizes, which resulted in high CH4 and CO2 conversions of 80 and 86%, respectively, along with the lowest rate of carbon deposition after a 50 h reaction time stream, which was enhanced via strong metal support interaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Serrano-Lotina, L. Daza, Appl. Catal. A Gen. 474 (2014)

  2. E. Baktash, P. Littlewood, R. Schomäcker, A. Thomas, P.C. Stair, Appl. Catal. B Environ. 179 (2015)

  3. J.L. Ewbank, L. Kovarik, C.C. Kenvin, C. Sievers, Green Chem. 16 (2014)

  4. S.J.H. Rad, M. Haghighi, A.A. Eslami, F. Rahmani, N. Rahemi, Int. J. Hydrog. Energy 41 (2016)

  5. P. Frontera, A. Aloise, A. Macario, F. Crea, P.L. Antonucci, G. Giordano, J.B. Nagy, Res. Chem. Intermed. 37 (2011)

  6. K. Selvarajah, N.H.H. Phuc, B. Abdullah, F. Alenazey, D.-V.N. Vo, Res. Chem. Intermed. 42 (2016)

  7. A.I. Paksoy, B.S. Caglayan, A.E. Aksoylu, Appl. Catal. B Environ. 168 (2015)

  8. H. Ay, D. Üner, Appl. Catal. B Environ. 179 (2015)

  9. E.G. Mahoney, J.M. Pusel, S.M. Stagg-Williams, S. Faraji, J. CO2 Util. 6 (2014)

  10. M. Khavarian, S.-P. Chai, A.R. Mohamed, Fuel 158 (2015)

  11. A. Horváth, L. Guczi, A. Kocsonya, G. Sáfrán, V. La Parola, L. Liotta, G. Pantaleo, A. Venezia, Appl. Catal. A Gen. 468 (2013)

  12. A.W. Budiman, S.H. Song, T.S. Chang, M.J. Choi, Adv. Powder Technol. 27 (2016)

  13. M. Khavarian, S.-P. Chai, A.R. Mohamed, Chem. Eng. J. 257 (2014)

  14. A. Serrano-Lotina, L. Daza, Int. J. Hydrog. Energy 39 (2014)

  15. R.K. Singha, A. Yadav, A. Agrawal, A. Shukla, S. Adak, T. Sasaki, R. Bal, Appl. Catal. B Environ. 191 (2016)

  16. K. Tao, L. Shi, Q. Ma, C. Zeng, C. Kong, M. Wu, L. Chen, S. Zhou, Y. Hu, N. Tsubaki, Chem. Eng. J. 221 (2013)

  17. Y.H. Hu, Advances in CO 2 Conversion and Utilization (ACS Publications, Washington, 2010)

  18. A.W. Budiman, S.-H. Song, T.-S. Chang, C.-H. Shin, M.-J. Choi, Catal. Surv. Asia 16 (2012)

  19. K. Takanabe, K. Nagaoka, K. Nariai, K.-I. Aika, J. Catal. 232 (2005)

  20. K.C. Mondal, V.R. Choudhary, U.A. Joshi, Appl. Catal. A Gen. 316 (2007)

  21. G. Zhang, A. Su, Y. Du, J. Qu, Y. Xu, J. Colloid Interface Sci. 433 (2014)

  22. W.-J. Cai, L.-P. Qian, B. Yue, H.-Y. He, Chin. Chem. Lett. 25 (2014)

  23. K.Y. Koo, S.-H. Lee, U.H. Jung, H.-S. Roh, W.L. Yoon, Fuel Process. Technol. 119 (2014)

  24. N. El Hassan, M. Kaydouh, H. Geagea, H. El Zein, K. Jabbour, S. Casale, H. El Zakhem, P. Massiani, Appl. Catal. A Gen. 520 (2016)

  25. K.Y. Koo, H.-S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, S.B. Park, Appl. Catal. A Gen. 340 (2008)

  26. A.A. Ibrahim, M.A. Naeem, A.H. Fakeeha, W.U. Khan, A.S. Al-Fatesh, A.E. Abasaeed, Chem. Eng. Technol. 38 (2015)

  27. R. Bouarab, O. Akdim, A. Auroux, O. Cherifi, C. Mirodatos, Appl. Catal. A Gen. 264 (2004)

  28. R. Zanganeh, M. Rezaei, A. Zamaniyan, Int. J. Hydrog. Energy 38 (2013)

  29. Y.H. Hu, Catal. Today 148 (2009)

  30. N.H. Elsayed, N.R.M. Roberts, B. Joseph, J.N. Kuhn, Appl. Catal. B Environ. 179 (2015)

  31. M. Abdollahifar, M. Haghighi, A.A. Babaluo, J. Ind. Eng. Chem. 20 (2014)

  32. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Pure Appl. Chem. 87 (2015)

  33. Z. Fattah, M. Rezaei, A. Biabani-Ravandi, A. Irankhah, H. Arandiyan, Chem. Eng. Commun. 203 (2016)

  34. K.S. Sing, Pure Appl. Chem. 57 (1985)

  35. H. Wang, E. Ruckenstein, Appl. Catal. A Gen. 209 (2001)

  36. F. Mirzaei, M. Rezaei, F. Meshkani, Z. Fattah, J. Ind. Eng. Chem. 21 (2015)

  37. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, R. Grimes, Advanced Inorganic Chemistry (Wiley, New York, 1988)

    Google Scholar 

  38. W. Zhang, H.L. Tay, S.S. Lim, Y. Wang, Z. Zhong, R. Xu, Appl. Catal. B Environ. 95 (2010)

  39. C. Wang, S. Liu, L. Liu, X. Bai, Mater. Chem. Phys. 96 (2006)

  40. S. Jiang, Y. Lu, S. Wang, Y. Zhao, X. Ma, Appl. Surf. Sci. 416 (2017)

  41. G. Zhang, Y. Du, Y. Xu, Y. Zhang, J. Ind. Eng. Chem. 20 (2014)

  42. K. Nagaoka, K. Seshan, K.-I. Aika, J.A. Lercher, J. Catal. 197 (2001)

  43. I.H. Son, S.J. Lee, I.Y. Song, W.S. Jeon, I. Jung, D.J. Yun, D.-W. Jeong, J.-O. Shim, W.-J. Jang, H.-S. Roh, Fuel 136 (2014)

  44. S. Wang, G.Q.M. Lu, J. Chem. Technol. Biotechnol. 75 (2000)

  45. G. Zhang, L. Hao, Y. Jia, Y. Du, Y. Zhang, Int. J. Hydrog. Energy 40 (2015)

  46. M. Jafarbegloo, A. Tarlani, A.W. Mesbah, S. Sahebdelfar, J. Nat. Gas Sci. Eng. 27 (2015)

  47. L. Zhang, L. Li, Y. Zhang, Y. Zhao, J. Li, J. Energy Chem. 23 (2014)

  48. M. Jafarbegloo, A. Tarlani, A.W. Mesbah, J. Muzart, S. Sahebdelfar, Catal. Lett. 146 (2016)

Download references

Acknowledgements

The authors gratefully acknowledged the financial support provided by USM-NanoMITE under the Long-Term Research Grant Scheme (LRGS, 203/PJKIMIA/6720009). All authors are affiliated to the Low Carbon Economy cluster in USM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rahman Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukri, M.F.F., Khavarian, M. & Mohamed, A.R. Effect of cobalt loading on suppression of carbon formation in carbon dioxide reforming of methane over Co/MgO catalyst. Res Chem Intermed 44, 2585–2605 (2018). https://doi.org/10.1007/s11164-017-3248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3248-1

Keywords

Navigation