Skip to main content
Log in

Unmodified Fe3O4 nanostructure promoted with external magnetic field: safe, magnetically recoverable, and efficient nanocatalyst for N- and C-alkylation reactions in green conditions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Transition metal compounds have emerged as suitable catalysts for organic reactions. Magnetic compounds as soft Lewis acids can be used as catalysts for organic reactions. In this report, the Fe3O4 nanostructures were obtained from Fe2+ and Fe3+-salts, under an external magnetic field (EMF) without any protective agent. The X-ray photoelectron spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy tools were used to characterize these magnetic compounds. The two-dimensional (2-D, it showed nanometric size in the two dimensions, nanorod structure) Fe3O4 compound showed high catalytic activity and stability in N- and C-alkylation reactions. A diverse range of N- and C-alkylation products were obtained in moderate to high yield under green and mild conditions in air. Also the N- and C-alkylation products can be obtained with different selectivity and yield by exposure reactions with EMF. Results of alkylation reactions showed that the presence of Fe(II) and Fe(III) species on the surface of magnetic catalysts (phase structure of magnetic compounds) are essential as very cheap active sites. Also, morphology of magnetic catalysts had influence on their catalytic performances. After the reaction, the catalyst/product(s) separation could be easily achieved with an external magnet and more than 95% of catalyst could be recovered. The catalyst was reused at least four times without any loss of its high catalytic activity for N- and C-alkylation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4

Similar content being viewed by others

References

  1. X. Jian, B. Wu, Y. Wei, S. Xue Dou, X. Wang, W. He, N. Mahmood, ACS Appl. Mater Interfaces 8(9), 6101 (2016)

    Article  CAS  Google Scholar 

  2. D.J. Kim, Y.K. Lyu, H.N. Choi, I.H. Min, W.Y. Lee, Chem. Commun. 23, 2966 (2005)

    Article  Google Scholar 

  3. A. Hu, G.T. Yee, W. Lin, J. Am. Chem. Soc. 127, 12486 (2005)

    Article  CAS  Google Scholar 

  4. A.H. Lu, E.L. Salabas, F. Sch¨uth, Angew. Chem. Int. Ed. 46, 1222 (2007)

    Article  CAS  Google Scholar 

  5. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vande Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008)

    Article  CAS  Google Scholar 

  6. Y. Jiang, J. Jiang, Q. Gao, M. Ruan, H. Yu, L. Qi, Nanotechnology 19, 075714 (2008)

    Article  Google Scholar 

  7. R. Mart´ınez, D.J. Ram´on, M. Yus, Adv. Synth. Catal. 350, 1235 (2008)

    Article  Google Scholar 

  8. C. Gonzalez-Arellano, K. Yoshida, R. Luque, P.L. Gai, Green Chem. 12, 1281 (2010)

    Article  CAS  Google Scholar 

  9. E. Rafiee, M. Joshaghani, P.G.-S. Abadi, RSC Adv. 5(90), 74091 (2015)

    Article  CAS  Google Scholar 

  10. H. Firouzabadi, N. Iranpoor, M. Gholinejad, J. Hoseini, Adv. Synth. Catal. 353, 125 (2011)

    Article  CAS  Google Scholar 

  11. M. Hasan, G. Mustafa, J. Iqbal, M. Ashfaqa, N. Mahmood, Toxicol. Res. (2018). https://doi.org/10.1039/C7TX00248C

  12. M. Hasan, W. Yang, Y. JuXin Chu, Y. Wang, Y. Deng, N. Mahmood, Y. Hou, Nano. Res. 10, 1912 (2017)

    Article  CAS  Google Scholar 

  13. W.I. Gilbert, J. Turkevich, E.S. Wallis, J. Org. Chem. 3, 611 (1938)

    Article  Google Scholar 

  14. L.S. Glebov, G.A. Kliger, T.P. Popova, V.E. Shiryaeva, V.P. Ryzhikov, E.V. Marchevskaya, O.A. Lesik, S.M. Loktev, V.G. Beryezkin, J. Mol. Catal. 35, 335 (1986)

    Article  CAS  Google Scholar 

  15. Q. Liu, W. Ma, R. He, Z. Mu, Catal. Today 106, 52 (2005)

    Article  CAS  Google Scholar 

  16. A. Schple, U. Nieken, O. Shekhah, W. Ranke, R. Schlçgl, G. Kolios, Phys. Chem. Chem. Phys. 9, 3619 (2007)

    Article  Google Scholar 

  17. D. Guin, B. Baruwati, S.V. Manorama, J. Mol. Catal. A Chem. 242, 26 (2005)

    Article  CAS  Google Scholar 

  18. Y. Joseph, M. Wühn, A. Niklewski, W. Ranke, W. Weiss, C. Wöll, R. Schlögl, Phys. C hem. Chem. Phys. 2, 5314 (2000)

    Article  CAS  Google Scholar 

  19. H. Tang, X. Jian, B. Wu, S. Liu, Z. Jiang, X. Chen, W. Lv, W. He, W. Tian, Y. Wei, Y. Gao, T. Chen, G. Li, Compos. Part B Eng. 107, 51 (2016)

    Article  CAS  Google Scholar 

  20. E. Rafiee, M. Joshaghani, P.G.-S. Abadi, J. Magn. Magn. Mater. 408, 107 (2016)

    Article  CAS  Google Scholar 

  21. E. Rafiee, M. Kahrizi, M. Joshaghani, P.G.-S. Abadi, Res. Chem. Intermed. 42, 5573 (2015)

    Article  Google Scholar 

  22. S. Kang, Z. Jia, S. Shi, D.E. Nikles, J.W. Harrell, Appl. Phys. Lett. 86, 062503 (2005)

    Article  Google Scholar 

  23. M.A. Halcrow, Spin-crossover materials: properties and applications (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  24. A. Bousseksou, G. Molnár, L. Salmona, W. Nicolazzi, Chem. Soc. Rev. 40(6), 3313 (2011)

    Article  CAS  Google Scholar 

  25. A.Y. Yermakov, T.A. Feduschak, M.A. Uimin, A.A. Mysik, V.S. Gaviko, O.N. Chupakhin, A.B. Shishmakov, V.G. Kharchuk, L.A. Petrov, Y.A. Kotov, A.V. Vosmerikov, A.V. Korolyov, Solid State Ion. 172(1), 317 (2004)

    Article  CAS  Google Scholar 

  26. S. Kitashima, A. Kuroda, K. Hirosea, M. Sennaa, A.Y. Yermakovb, M.A. Uimin, J. Alloy. Compd. 434, 646 (2007)

    Article  Google Scholar 

  27. J. Sá, J. Szlachetko, M. Sikora, M. Kavčič, O.V. Safonova, M. Nachtegaal, Nanoscale 5(18), 8462 (2013)

    Article  Google Scholar 

  28. G. Yao, F. Wang, X. Wang, K. Gui, Energy 35(5), 2295 (2010)

    Article  CAS  Google Scholar 

  29. E. Rafiee, M. Joshaghani, P.G.-S. Abadi, Arab. J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2015.09.004

  30. E. Rafiee, M. Khodayari, J. Mol. Catal. A Chem. 398, 336 (2015)

    Article  CAS  Google Scholar 

  31. D.J. Ramo´n, M. Yus, Chem. Rev. 110, 1611 (2010)

    Article  Google Scholar 

  32. R.C.C. Costa, M.F.F. Lelis, L.C.A. Oliveira, J.D. Fabris, J.D. Ardisson, R.R.V.A. Rios, C.N. Silva, R.M. Lago, J. Hazard. Mater. B129, 171 (2006)

    Article  Google Scholar 

  33. T. Zeng, W.W. Chen, C.M. Cirtiu, A. Moores, G. Song, C.J. Li, Green Chem. 12, 570 (2010)

    Article  CAS  Google Scholar 

  34. C. Cui, L. Gan, H.H. Li, S.H. Yu, M. Heggen, P. Strasser, Nano Lett. 12, 5885 (2012)

    Article  CAS  Google Scholar 

  35. M. Crespo-Quesada, A. Yarulin, M. Jin, Y. Xia, L. Kiwi Minsker, J. Am. Chem. Soc. 133, 12787 (2011)

    Article  CAS  Google Scholar 

  36. M. Jin, H. Zhang, Z. Xie, Y. Xia, Angew. Chem. Int. Ed. 50, 7850 (2011)

    Article  CAS  Google Scholar 

  37. A. Mohanty, N. Garg, R. Jin, Angew. Chem. Int. Ed. 49, 4962 (2010)

    Article  CAS  Google Scholar 

  38. X. Jian, S. Liu, Y. Gao, W. Zhang, W. He, A. Mahmood, C.M. Subramaniyam, X. Wang, N. Mahmood, S. Dou, Appl. Mater. Interfaces 9(22), 18872 (2017)

    Article  CAS  Google Scholar 

  39. G. Sun, Z. Wang, Tetrahedron Lett. 49(33), 4929 (2008)

    Article  CAS  Google Scholar 

  40. M.M. Mojtahedi, M.S. Abaee, T. Alishiri, Tetrahedron Lett. 50, 2322 (2009)

    Article  CAS  Google Scholar 

  41. R.A. Crane, M. Dickinson, I.C. Popescu, T.B. Scott, Water Res. 45, 2931 (2011)

    Article  CAS  Google Scholar 

  42. K.I. Fujita, Z. Li, N. Ozekib, R. Yamaguchi, Tetrahedron Lett. 44(13), 2687 (2003)

    Article  CAS  Google Scholar 

  43. I. Geukens, F. Vermoortele, M. Meledina, S. Turner, G. Van-Tendeloo, D.E. De-Vos, Appl. Catal. A Gen. 469, 373 (2014)

    Article  CAS  Google Scholar 

  44. H. Yang, R. Mao, C. Luo, C. Lu, G. Cheng, Tetrahedron 70(46), 8829 (2014)

    Article  CAS  Google Scholar 

  45. X.H. Lu, Y.W. Sun, X.L. Wei, C. Peng, D. Zhou, Q.H. Xia, Catal. Commun. 55, 78 (2014)

    Article  CAS  Google Scholar 

  46. R. Kawahara, K. Fujita, R. Yamaguchi, Adv. Synth. Catal. 353(7), 1161 (2011)

    Article  CAS  Google Scholar 

  47. C. Gonzalez-Arellano, K. Yoshida, R. Luque, P.L. Gai, Green Chem. 12(7), 1281 (2010)

    Article  CAS  Google Scholar 

  48. K.I. Shimizu, N. Imaiida, K. Kon, S.M.A. Hakim-Siddiki, A. Satsuma, ACS. Catal. 3(5), 998 (2013)

    Article  CAS  Google Scholar 

  49. Q. Li, S. Fan, Q. Sun, H. Tian, X. Yu, Q. Xu, Org. Biomol. Chem. 10(15), 2966 (2012)

    Article  CAS  Google Scholar 

  50. M.M. Reddy, M.A. Kumar, P. Swamy, M. Naresh, K. Srujana, L. Satyanarayana, A. Venugopal, N. Narender, Green Chem. 15(12), 3474 (2013)

    Article  CAS  Google Scholar 

  51. H. Liu, G.K. Chuah, S. Jaenicke, J. Catal. 292, 130 (2012)

    Article  CAS  Google Scholar 

  52. A.M. Rasero-Almansa, A. Corma, M. Iglesias, F. Sanchez, Chem. Cat. Chem. 6(6), 1794 (2014)

    CAS  Google Scholar 

  53. R. Ramachandran, G. Prakash, S. Selvamurugan, P. Viswanathamurthi, J.G. Malecki, V. Ramkumar, Dalton Trans. 43(21), 7889 (2014)

    Article  CAS  Google Scholar 

  54. R. Martínez, D.J. Ramón, M. Yus, Org. Biomol. Chem. 7(10), 2176 (2009)

    Article  Google Scholar 

  55. Y. Zhang, X. Qi, X. Cui, F. Shi, Y. Deng, Tetrahedron Lett. 52(12), 1334 (2011)

    Article  CAS  Google Scholar 

  56. K. Fujita, Y. Enoki, R. Yamaguchi, Tetrahedron 64(8), 1943 (2008)

    Article  CAS  Google Scholar 

  57. T. Yan, B.L. Feringa, K. Barta, Nat. Commun. 5, 5602 (2014)

    Article  CAS  Google Scholar 

  58. M.M. Reddy, M.A. Kumar, P. Swamy, M. Naresh, K. Srujana, L. Satyanarayana, A. Venugopal, N. Narender, Green Chem. 15, 3474 (2013)

    Article  CAS  Google Scholar 

  59. R. Ramachandran, G. Prakash, S. Selvamurugan, P. Viswanathamurthi, J.G. Malecki, V. Ramkumar, Dalton Trans. 43, 7889 (2014)

    Article  CAS  Google Scholar 

  60. S. Roy, S. Podder, J. Choudhury, J. Chem. Sci. 120(5), 429 (2008)

    Article  CAS  Google Scholar 

  61. T. Tsuchimoto, K. Tobita, T. Hiyama, S. Fukuzawa, J. Org. Chem. 62(20), 6997 (1997)

    Article  CAS  Google Scholar 

  62. B.Q. Wang, S.K. Xiang, Z.P. Sun, B.T. Guan, P. Hu, K.Q. Zhao, Z.J. Shi, Tetrahedron Lett. 49(27), 4310 (2008)

    Article  CAS  Google Scholar 

  63. H.B. Sun, Tetrahedron 63(41), 10185 (2007)

    Article  CAS  Google Scholar 

  64. B. Jäger, A. Wermanna, P. Scholza, M. Müllerb, U. Reislöhnerc, A. Stollea, B. Ondruschka, Appl. Catal. A: Gen. 443, 87 (2012)

    Article  Google Scholar 

  65. Y. Sato, Tetrahedron 68(35), 7077 (2012)

    Article  CAS  Google Scholar 

  66. D.F. Bagster, Int. J. Miner. Process. 20, 1 (1987)

    Article  CAS  Google Scholar 

  67. A. Junod, M. Roulin, B. Revaz, A. Mirmelstein, J.Y. Genoud, E. Walker, A. Erb, Phys. C 282–287, 1399 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Razi University Research Council for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzat Rafiee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, E., Joshaghani, M. & Abadi, P.GS. Unmodified Fe3O4 nanostructure promoted with external magnetic field: safe, magnetically recoverable, and efficient nanocatalyst for N- and C-alkylation reactions in green conditions. Res Chem Intermed 44, 2503–2522 (2018). https://doi.org/10.1007/s11164-017-3243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3243-6

Keywords

Navigation