Skip to main content
Log in

Morphology-controlled synthesis of Ti-doped α-Fe2O3 nanorod arrays as an efficient photoanode for photoelectrochemical applications

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Few reports have been published on the optimization of nanostructures while doping with the Ti (Ti3+/Ti4+) elemental. Here, Ti-doped α-Fe2O3 nanorod arrays prepared via the hydrothermal method with the addition of TiCl3 as the Ti source and urea as the morphological regulator were used as photoanodes in photoelectrochemical cells. In the process of a hydrothermal reaction, Ti elemental was incorporated into α-Fe2O3 photoanodes using TiCl3 as precursor and urea was used as the morphological regulator to assist α-Fe2O3 to form nanorod arrays. The photoelectrochemical performance of the as-prepared Ti-doped α-Fe2O3 nanorod array (TF1) photoanodes exhibited a remarkable photocurrent of 0.22 mA cm−2 (275 times higher than that of the undoped α-Fe2O3 nanorod arrays) at 1.23 V (vs. RHE) and a 150-mV cathodic shift of photocurrent onset potential. The enhanced photoelectrochemical performance was ascribed to the synergistic effect of the one-dimensional nanoarray structure and the Ti elemental doping, which increased donor density and reduced photogenerated electron–hole recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, Adv. Mater. 29, 1604480 (2017)

    Article  Google Scholar 

  2. A. Landman, H. Dotan, G.E. Shter, M. Wullenkord, A. Houaijia, A. Maljusch, Nat. Mater. 16, 646 (2017)

    Article  CAS  Google Scholar 

  3. Z. Tian, J. Dai, J. Li, G. Zhu, J. Lu, C. Xu, J Nanosci. Nanotechnol. 16, 12590 (2016)

    Article  CAS  Google Scholar 

  4. W.-H. Hung, C.-J. Peng, C.-R. Yang, C.-J. Li, J.-J. Shyue, P.-C. Chang, Nano Energy. 30, 523 (2016)

    Article  CAS  Google Scholar 

  5. A. Isaev, N. Shabanov, F. Orudzhev, K. Giraev, R. Emirov, J. Nanosci. Nanotechnol. 17, 4498 (2017)

    Article  Google Scholar 

  6. M.E. Warwick, K. Kaunisto, D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, ACS Appl. Mater. Interfaces 7, 8667 (2015)

    Article  CAS  Google Scholar 

  7. A.P. Singh, A. Mettenbörger, P. Golus, S. Mathur, Int. J. Hydrogen Energy 37, 13983 (2012)

    Article  CAS  Google Scholar 

  8. A.G. Tamirat, J. Rick, A.A. Dubale, W.-N. Su, B.-J. Hwang, Nanoscale Horiz. 1, 243 (2016)

    Article  CAS  Google Scholar 

  9. S. Hussain, S. Hussain, A. Waleed, M.M. Tavakoli, Z. Wang, S. Yang, ACS Appl. Mater. Interface 8, 35315 (2016)

    Article  CAS  Google Scholar 

  10. L. Yu, Q. Wang, Z. Zhang, J. He, L. Guo, K. Dong, J. Nanosci. Nanotechnol. 17, 1350 (2017)

    Article  CAS  Google Scholar 

  11. M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Nano Lett. 17, 2490 (2017)

    Article  CAS  Google Scholar 

  12. Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, Nano Lett. 14, 2123 (2014)

    Article  CAS  Google Scholar 

  13. T. Wang, W. Luo, X. Wen, Z. Zou, W. Huang, ChemNanoMat. 2, 652 (2016)

    Article  CAS  Google Scholar 

  14. D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, F. Rossi, G. Salviati, ACS Appl. Mater. Interfaces 5, 7130 (2013)

    Article  CAS  Google Scholar 

  15. X. Xie, K. Li, W.-D. Zhang, RSC Adv. 6, 74234 (2016)

    Article  CAS  Google Scholar 

  16. L. Badia-Bou, E. Mas-Marza, P. Rodenas, E.M. Barea, J. Phys. Chem. C 117, 3826 (2013)

    Article  CAS  Google Scholar 

  17. Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Nano Lett. 11, 2119 (2011)

    Article  CAS  Google Scholar 

  18. M.A. Lukowski, S. Jin, J. Phys. Chem. C 115, 12388 (2011)

    Article  CAS  Google Scholar 

  19. J. Launay, G. Horowitz, J. Cryst. Growth 57, 118 (1982)

    Article  CAS  Google Scholar 

  20. Y.-S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J.-N. Park, E.W. McFarland, Chem. Mater. 20, 3803 (2008)

    Article  CAS  Google Scholar 

  21. O. Neufeld, M.C. Toroker, J. Phys. Chem. C 119, 5836 (2015)

    Article  CAS  Google Scholar 

  22. J.Y. Kim, G. Magesh, D.H. Youn, J.-W. Jang, J. Kubota, K. Domen, Sci. Rep. 3, 2681 (2013)

    Article  Google Scholar 

  23. T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Grätzel, Adv. Mater. 24, 2699 (2012)

    Article  CAS  Google Scholar 

  24. M. Mohapatra, T. Padhi, S. Anand, B. Mishra, Desalin. Water Treat. 50, 376 (2012)

    Article  CAS  Google Scholar 

  25. A. Kleiman-Shwarsctein, Y.-S. Hu, A.J. Forman, G.D. Stucky, E.W. McFarland, J. Phys. Chem. C 112, 15900 (2008)

    Article  CAS  Google Scholar 

  26. A. Pu, J. Deng, M. Li, J. Gao, H. Zhang, Y. Hao, J. Mater. Chem. A 2, 2491 (2014)

    Article  CAS  Google Scholar 

  27. R. Franking, L. Li, M.A. Lukowski, F. Meng, Y. Tan, R.J. Hamers, Energy Environ. Sci. 6, 500 (2013)

    Article  CAS  Google Scholar 

  28. O. Zandi, B.M. Klahr, T.W. Hamann, Energy Environ. Sci. 6, 634 (2013)

    Article  CAS  Google Scholar 

  29. L. Wang, H. Yang, X. Liu, R. Zeng, M. Li, Y. Huang, Angew. Chem. 129, 1125 (2017)

    Article  Google Scholar 

  30. Z. Luo, C. Li, S. Liu, T. Wang, J. Gong, Chem. Sci. 8, 91 (2017)

    Article  CAS  Google Scholar 

  31. F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Chem. Sci. 2, 737 (2011)

    Article  Google Scholar 

  32. I. Cesar, A. Kay, J.A. Gonzalez Martinez, M. Grätzel, J. Am. Chem. Soc. 128, 4582 (2006)

    Article  CAS  Google Scholar 

  33. L. Li, Y. Yu, F. Meng, Y. Tan, R.J. Hamers, S. Jin, Nano Lett. 12, 724 (2012)

    Article  CAS  Google Scholar 

  34. L. Xi, P.D. Tran, S.Y. Chiam, P.S. Bassi, W.F. Mak, H.K. Mulmudi, S.K. Batabyal, J. Barber, J.S.C. Loo, L.H. Wong, J. Phys. Chem. C 116, 13884 (2012)

    Article  CAS  Google Scholar 

  35. A. Kay, I. Cesar, M. Grätzel, J. Am. Chem. Soc. 128, 15714 (2006)

    Article  CAS  Google Scholar 

  36. R.T. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  37. J.D. Bryan, D.R. Gamelin, Prog. Inorg. Chem. 54, 47 (2005)

    Article  CAS  Google Scholar 

  38. G. Carraro, C. Maccato, A. Gasparotto, M.E.A. Warwick, C. Sada, S. Turner, Sol. Energy Mater. Sol. Cells 159, 456 (2017)

    Article  CAS  Google Scholar 

  39. A. Mettenbörger, T. Singh, A.P. Singh, T.T. Järvi, M. Moseler, M. Valldor, Int. J. Hydrog. Energy 39, 4828 (2014)

    Article  Google Scholar 

  40. M.E.A. Warwick, G. Carraro, A. Gasparotto, C. Maccato, D. Barreca, C. Sada, Phys. Status Solidi 212, 1501 (2015)

    Article  CAS  Google Scholar 

  41. D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, M.E.A. Warwick, K. Kaunisto, Adv. Mater. Interfaces 2, 1500313 (2015)

    Article  Google Scholar 

  42. Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang, T. Xie, Electrochim. Acta 129, 358 (2014)

    Article  CAS  Google Scholar 

  43. M.E. Warwick, D. Barreca, E. Bontempi, G. Carraro, A. Gasparotto, C. Maccato, Phys. Chem. Chem. Phys. 17, 12899 (2015)

    Article  CAS  Google Scholar 

  44. C. Miao, S. Ji, G. Xu, G. Liu, L. Zhang, C. Ye, ACS Appl. Mater. Interfaces 4, 4428 (2012)

    Article  CAS  Google Scholar 

  45. C. Miao, T. Shi, G. Xu, S. Ji, C. Ye, ACS Appl. Mater. Interfaces 5, 1310 (2013)

    Article  CAS  Google Scholar 

  46. P. Zhang, A. Kleiman-Shwarsctein, Y.-S. Hu, J. Lefton, S. Sharma, A.J. Forman, E. McFarland, Energy Environ. Sci. 4, 1020 (2011)

    Article  CAS  Google Scholar 

  47. M. Chen, D.W. Goodman, Chem. Soc. Rev. 37, 1860 (2008)

    Article  CAS  Google Scholar 

  48. J. Theerthagiri, R. Senthil, A. Priya, J. Madhavan, R. Michael, M. Ashokkumar, RSC Adv. 4, 38222 (2014)

    Article  CAS  Google Scholar 

  49. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441 (2008)

    Article  CAS  Google Scholar 

  50. Y. Chiam, M.H. Kumar, P.S. Bassi, H.L. Seng, J. Barber, L.H. Wong, ACS Appl. Mater. Interfaces 6, 5852 (2014)

    Article  Google Scholar 

  51. K. Sivula, F. Le Formal, M. Grätzel, Chemsuschem 4, 432 (2011)

    Article  CAS  Google Scholar 

  52. Z. Chen, H.N. Dinh, E. Miller (New York, 2013), p. 49

  53. A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne, J. Glasscock, Int. J. Hydrogen Energy 31, 1999 (2006)

    Article  CAS  Google Scholar 

  54. F. Cardon, W. Gomes, J. Phys. D Appl. Phys. 11, L63 (1978)

    Article  CAS  Google Scholar 

  55. G.V. Govindaraju, G.P. Wheeler, D. Lee, K.-S. Choi, Chem. Mater. 29, 355 (2016)

    Article  Google Scholar 

  56. B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, T.W. Hamann, Energy Environ. Sci. 5, 7626 (2012)

    Article  CAS  Google Scholar 

  57. Q. Liu, F. Cao, F. Wu, H. Lu, L. Li, Adv. Mater. Interfaces 3, 1600256 (2016)

    Article  Google Scholar 

  58. W. Qin, N. Wang, T. Yao, S. Wang, H. Wang, Y. Cao, S.F. Liu, C. Li, Chemsuschem 8, 3987 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the “National Nature Science Foundation of China (No. 51573058)” for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfeng Chen or Hong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Chen, Y., Xu, J. et al. Morphology-controlled synthesis of Ti-doped α-Fe2O3 nanorod arrays as an efficient photoanode for photoelectrochemical applications. Res Chem Intermed 44, 2365–2378 (2018). https://doi.org/10.1007/s11164-017-3234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3234-7

Keywords

Navigation