Skip to main content
Log in

Facile synthesis of TiO2–PC composites for enhanced photocatalytic abatement of multiple pollutant dye mixtures: a comprehensive study on the kinetics, mechanism, and effects of environmental factors

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the recent era, the inevitable emergence of versatile micropollutants in ground and surface water has become a serious concern for the long-term sustainability of the environment. Most of the recent studies, conducted to minimize water pollution, are mainly limited to either single or binary pollutant-based analyses. Hence, photocatalytic degradation of a multicomponent pollutant dye (four components) mixture was studied in the present work. Here, the economical TiO2–processed carbon (PC) nano-/microcomposite-mediated degradation of a pollutant dye mixture in aqueous solution under continuous UV irradiation was investigated and compared with bare TiO2 photocatalysis. The overall degradation kinetics, degradation mechanism and the impact of several environmental factors on photocatalytic decomposition of pollutant dye mixtures have also been identified and addressed. It is observed that the TiO2–PC composite-mediated photocatalysis has superior degradation performance over that with bare TiO2 treatment. Consequently, the degradation kinetics parameters have also shown significant improvements for cases of TiO2–PC composite-mediated photocatalysis, for which the degradation rate constant has shown an improvement up to 22%, mainly due to the synergistic effect of the TiO2–PC composites. However, the mineralization level is barely improved. It may be noted that the catalyst reusability test has also shown the superiority of TiO2–PC composites over bare TiO2. In addition, the environmental factors such as salt concentration, pH, temperature, mixing/stirring speed and catalyst dose have shown significant influences over the degradation efficiency of these photocatalysts. It is interesting to observe that the alkaline condition (pH > 9.0) favors the improved photocatalytic performance of TiO2–PC composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Demirbas, J. Hazard. Mater. 167, 1 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.114

    Article  CAS  Google Scholar 

  2. H. Ali, Water Air Soil Pollut. 213, 251 (2010). https://doi.org/10.1007/s11270-010-0382-4

    Article  CAS  Google Scholar 

  3. Q. Zhou, M. Wang, J. Soils Sedim. 10, 1324 (2010). https://doi.org/10.1007/s11368-010-0247-x

    Article  CAS  Google Scholar 

  4. M. Bachratá, A. Šuňovská, M. Horník, M. Pipíška, J. Augustín, Nova Biotechnol. Chim. 12, 12 (2013). https://doi.org/10.2478/nbec-2013-0002

    Google Scholar 

  5. J.A. Wilkinson, W. Hoff, J. Phys. Chem. 29, 808 (1925). https://doi.org/10.1021/j150253a005

    Article  CAS  Google Scholar 

  6. M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Desalination 280, 1 (2011). https://doi.org/10.1016/j.desal.2011.07.019

    Article  CAS  Google Scholar 

  7. M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan et al., Carbohydr. Polym. 113, 115 (2014). https://doi.org/10.1016/j.carbpol.2014.07.007

    Article  CAS  Google Scholar 

  8. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001). https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  Google Scholar 

  9. V.V. Chandanshive, N.R. Rane, A.R. Gholave, S.M. Patil, B.H. Jeon, S.P. Govindwar, Environ. Res. 150, 88 (2016). https://doi.org/10.1016/j.envres.2016.05.047

    Article  CAS  Google Scholar 

  10. D. Li, Y. Yang, C. Li, Y. Liu, Environ. Res. 154, 139 (2017). https://doi.org/10.1016/j.envres.2016.12.027

    Article  CAS  Google Scholar 

  11. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997 (2010). https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  Google Scholar 

  12. A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A Chem. 328, 8 (2010). https://doi.org/10.1016/j.molcata.2010.05.023

    Article  CAS  Google Scholar 

  13. A.Y.C. Tong, R. Braund, D.S. Warren, B.M. Peake, Cent. Eur. J. Chem. 10, 989 (2012). https://doi.org/10.2478/s11532-012-0049-7

    CAS  Google Scholar 

  14. A.C. Affam, M. Chaudhuri, J. Environ. Manag. 130, 160 (2013). https://doi.org/10.1016/j.jenvman.2013.08.058

    Article  CAS  Google Scholar 

  15. P.V.L. Reddy, B. Kavitha, P.A.K. Reddy, K.H. Kim, Environ. Res. 154, 296 (2017). https://doi.org/10.1016/j.envres.2017.01.018

    Article  Google Scholar 

  16. M. Anpo, Catal. Surv. Jpn. 1(2), 169 (1997). https://doi.org/10.1023/A:1019024913274

    Article  CAS  Google Scholar 

  17. B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissière, M. Antonietti, C. Sanchez, Chem. Mater. 16, 2948 (2004). https://doi.org/10.1021/cm0495966

    Article  CAS  Google Scholar 

  18. L. An, G. Wang, Y. Cheng, L. Zhao, F. Gao, Y. Tian, Res. Chem. Intermed. 41, 7449 (2015). https://doi.org/10.1007/s11164-014-1836-x

    Article  CAS  Google Scholar 

  19. B.E. Castillo-Reyes, V.M. Ovando-Medina, O. González-Ortega, P.A. Alonso-Dávila, I. Juárez-Ramírez, H. Martínez-Gutiérrez, A. Márquez-Herrera, Res. Chem. Intermed. 41, 8211 (2015). https://doi.org/10.1007/s11164-014-1886-0

    Article  CAS  Google Scholar 

  20. R. Liang, A. Hu, W. Li, Y.N. Zhou, J. Nanopart. Res. 15, 1990 (2013). https://doi.org/10.1007/s11051-013-1990-x

    Article  Google Scholar 

  21. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 634 (2014). https://doi.org/10.1039/c3ta14052k

    Google Scholar 

  22. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014). https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  23. S. Wei, X. Hu, H. Liu, Q. Wang, C. He, J. Hazard. Mater. 294, 168 (2015). https://doi.org/10.1016/j.jhazmat.2015.03.067

    Article  CAS  Google Scholar 

  24. R. Zhang, S. Santangelo, E. Fazio, F. Neri, M. D’Arienzo, F. Morazzoni, Y. Zhang, N. Pinna, P.A. Russo, Chem. Eur. J. 21, 14901 (2015). https://doi.org/10.1002/chem.201502433

    Article  CAS  Google Scholar 

  25. T.H. Kim, C. Gómez-Solís, E. Moctezuma, S.W. Lee, Res. Chem. Intermed. 40, 1595 (2014). https://doi.org/10.1007/s11164-013-1064-9

    Article  CAS  Google Scholar 

  26. L. Zhou, L. Wang, J. Zhang, J. Lei, Y. Liu, Res. Chem. Intermed. 43, 2081 (2017). https://doi.org/10.1007/s11164-016-2748-8

    Article  CAS  Google Scholar 

  27. T.Y. Kim, Y.H. Lee, K.H. Park, S.J. Kim, S.Y. Cho, Res. Chem. Intermed. 31, 343 (2005). https://doi.org/10.1163/1568567053956581

    Article  CAS  Google Scholar 

  28. J. Araña, J.M. Doña-Rodríguez, E.T. Rendón, C.G. Cabo, O. González-Díaz, J.A. Herrera-Melián, J. Pérez-Peña, G. Colón, J.A. Navío, Appl. Catal. B Environ. 44, 153 (2003). https://doi.org/10.1016/S0926-3373(03)00075-4

    Article  Google Scholar 

  29. J. Araña, J.M. Doña-Rodríguez, E.T. Rendón, C.G. Cabo, O. González-Díaz, J.A. Herrera-Melián, J. Pérez-Peña, G. Colón, J.A. Navío, Appl. Catal. B Environ. 44, 161 (2003). https://doi.org/10.1016/S0926-3373(03)00107-3

    Article  Google Scholar 

  30. Y. Li, S. Zhang, Q. Yu, W. Yin, Appl. Surf. Sci. 253, 9254 (2007). https://doi.org/10.1016/j.apsusc.2007.05.057

    Article  CAS  Google Scholar 

  31. M. Asiltürk, S. Şener, Chem. Eng. J. 180, 354 (2012). https://doi.org/10.1016/j.cej.2011.11.045

    Article  Google Scholar 

  32. C. Andriantsiferana, E.F. Mohamed, H. Delmas, Environ. Technol. 35, 355 (2014). https://doi.org/10.1080/09593330.2013.828094

    Article  CAS  Google Scholar 

  33. P. Singh, M.C. Vishnu, K.K. Sharma, A. Borthakur, P. Srivastava, D.B. Pal, D. Tiwary, P.K. Mishra, J. Water Process Eng. 12, 20 (2016). https://doi.org/10.1016/j.jwpe.2016.04.007

    Article  Google Scholar 

  34. P. Singh, M.C. Vishnu, K.K. Sharma, R. Singh, S. Madhav, D. Tiwary, P.K. Mishra, Desalin. Water Treat. 57, 20552 (2016). https://doi.org/10.1080/19443994.2015.1108871

    Article  CAS  Google Scholar 

  35. S. Tamilselvi, M. Asaithambi, P. Sivakumar, Desalin. Water Treat. 57, 15495 (2016). https://doi.org/10.1080/19443994.2015.1071684

    Article  CAS  Google Scholar 

  36. A. Eshaghi, S. Hayeripour, A. Eshaghi, Res. Chem. Intermed. 42, 2461 (2016). https://doi.org/10.1007/s11164-015-2161-8

    Article  CAS  Google Scholar 

  37. H. Sayğılı, F. Güzel, J. Porous Mater. (2017). https://doi.org/10.1007/s10934-017-0459-1

    Google Scholar 

  38. S. Tazibet, L.F. Velasco, P. Lodewyckx, D.A. M’Hamed, Y. Boucheffa, J. Porous Mater. (2017). https://doi.org/10.1007/s10934-017-0444-8

    Google Scholar 

  39. P. Verma, S.K. Samanta, Res. Chem. Intermed. 43, 6317 (2017). https://doi.org/10.1007/s11164-017-2992-6

    Article  CAS  Google Scholar 

  40. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.039

    Article  CAS  Google Scholar 

  41. G. Imoberdorf, M. Mohseni, J. Hazard. Mater. 186, 240 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.118

    Article  CAS  Google Scholar 

  42. X. Zhu, Y. Wang, D. Zhou, J. Soils Sedim. 14, 1350 (2014). https://doi.org/10.1007/s11368-014-0883-7

    Article  CAS  Google Scholar 

  43. K.M. Reza, A.S.W. Kurny, F. Gulshan, Appl. Water Sci. (2015). https://doi.org/10.1007/s13201-015-0367-y

    Google Scholar 

  44. R. Rezaei, M. Mohseni, Appl. Catal. B Environ. 205, 302 (2017). https://doi.org/10.1016/j.apcatb.2016.12.038

    Article  CAS  Google Scholar 

  45. R. Rezaei, M. Mohseni, Chem. Eng. J. 310, 457 (2017). https://doi.org/10.1016/j.cej.2016.05.086

    Article  CAS  Google Scholar 

  46. F. Deng, B. Xiong, B. Chen, G. Zheng, J. Zhang, Environ. Sci. Pollut. Res. 23, 13268 (2016). https://doi.org/10.1007/s11356-016-6523-6

    Article  CAS  Google Scholar 

  47. D. Li, J. Jia, Y. Zhang, N. Wang, X. Guo, X. Yu, J. Hazard. Mater. 315, 1 (2016). https://doi.org/10.1016/j.jhazmat.2016.04.053

    Article  CAS  Google Scholar 

  48. B. Manoj, J. Bioremed. Biodeg. 6, 306 (2015). https://doi.org/10.4172/2155-6199.1000306

    Google Scholar 

  49. D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. 156, 200 (2000). https://doi.org/10.1016/S0169-4332(99)00508-5

    Article  CAS  Google Scholar 

  50. S. Bakardjieva, J. Šubrt, V. Štengl, M.J. Dianez, M.J. Sayagues, Appl. Catal. B Environ. 58, 193 (2005). https://doi.org/10.1016/j.apcatb.2004.06.019

    Article  CAS  Google Scholar 

  51. A. Kafizas, X. Wang, S.R. Pendlebury, P. Barnes, M. Ling, C. Sotelo-Vazquez et al., J. Phys. Chem. A 120, 715 (2016). https://doi.org/10.1021/acs.jpca.5b11567

    Article  CAS  Google Scholar 

  52. A. Kaur, A. Umar, S.K. Kansal, J. Colloid Interface Sci. 459, 257 (2015). https://doi.org/10.1016/j.jcis.2015.08.010

    Article  CAS  Google Scholar 

  53. I. Karabay, S.A. Yüksel, F. Ongül, S. Öztürk, M. Asli, Acta Phys. Pol. A 121, 265 (2012)

    Article  CAS  Google Scholar 

  54. A. Molla, M. Sahu, S. Hussain, Sci. Rep. 6, 26034 (2016). https://doi.org/10.1038/srep26034

    Article  CAS  Google Scholar 

  55. Q. Yu, R. Zhang, S. Deng, J. Huang, G. Yu, Water Res. 43, 1150 (2009). https://doi.org/10.1016/j.watres.2008.12.001

    Article  CAS  Google Scholar 

  56. S.K. Kansal, M. Chopra, Engineering 4, 416 (2012). https://doi.org/10.4236/eng.2012.48055

    Article  Google Scholar 

  57. C.C. Lin, Y.J. Chiang, Chem. Eng. J. 181–182, 196 (2012). https://doi.org/10.1016/j.cej.2011.11.062

    Article  Google Scholar 

  58. Ü. Geçgel, O. Üner, G. Gökara, Y. Bayrak, Adsorpt. Sci. Technol. 34, 512 (2016). https://doi.org/10.1177/0263617416669727

    Article  Google Scholar 

  59. P. Velmurugan, R.V. Kumar, G. Dhinakaran, Int. J. Environ. Sci. 1, 1492 (2011)

    CAS  Google Scholar 

  60. T.A. Khan, I. Ali, V.V. Singh, S. Sharma, J. Environ. Prot. Sci. 3, 11 (2009)

    Google Scholar 

  61. T.A. Khan, V.V. Singh, D. Kumar, J. Sci. Ind. Res. 63, 355 (2004)

    CAS  Google Scholar 

  62. A.H.A. Dabwan, N. Yuki, N.A.M. Asri, H. Katsumata, T. Suzuki, S. Kaneco, Open J. Inorg. Non-Met. Mater. 5, 21 (2015). https://doi.org/10.4236/ojinm.2015.52003

    CAS  Google Scholar 

  63. G.W. Cui, W.L. Wang, M.Y. Ma, M. Zhang, X.Y. Xia, F.Y. Han, X.F. Shi, Y.Q. Zhao, Y.B. Dong, B. Tang, Chem. Commun. 49, 6415 (2013). https://doi.org/10.1039/c3cc42500b

    Article  CAS  Google Scholar 

  64. C. Guillard, E. Puzenat, H. Lachheb, A. Houas, J.M. Herrmann, Int. J. Photoenergy 7, 1 (2005). https://doi.org/10.1155/S1110662X05000012

    Article  CAS  Google Scholar 

  65. J. Ângelo, P. Magalhães, L. Andrade, A. Mendes, Appl. Surf. Sci. 387, 183 (2016). https://doi.org/10.1016/j.apsusc.2016.06.101

    Article  Google Scholar 

  66. J.Y. Liao, X. Xiao, D. Higgins, D. Lee, F. Hassan, Z. Chen, Electrochim. Acta 108, 104 (2013). https://doi.org/10.1016/j.electacta.2013.06.073

    Article  CAS  Google Scholar 

  67. M. Bagheri, M. Mohseni, J. Hazard. Mater. 294, 1 (2015). https://doi.org/10.1016/j.jhazmat.2015.03.036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. A.K. Thakur, Dr. Sushant Kumar and Dr. Subrata Hait from the Indian Institute of Technology Patna for their help, support and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Kumar Samanta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Samanta, S.K. Facile synthesis of TiO2–PC composites for enhanced photocatalytic abatement of multiple pollutant dye mixtures: a comprehensive study on the kinetics, mechanism, and effects of environmental factors. Res Chem Intermed 44, 1963–1988 (2018). https://doi.org/10.1007/s11164-017-3209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3209-8

Keywords

Navigation