Skip to main content

Facile synthesis of TiO2–PC composites for enhanced photocatalytic abatement of multiple pollutant dye mixtures: a comprehensive study on the kinetics, mechanism, and effects of environmental factors

Abstract

In the recent era, the inevitable emergence of versatile micropollutants in ground and surface water has become a serious concern for the long-term sustainability of the environment. Most of the recent studies, conducted to minimize water pollution, are mainly limited to either single or binary pollutant-based analyses. Hence, photocatalytic degradation of a multicomponent pollutant dye (four components) mixture was studied in the present work. Here, the economical TiO2–processed carbon (PC) nano-/microcomposite-mediated degradation of a pollutant dye mixture in aqueous solution under continuous UV irradiation was investigated and compared with bare TiO2 photocatalysis. The overall degradation kinetics, degradation mechanism and the impact of several environmental factors on photocatalytic decomposition of pollutant dye mixtures have also been identified and addressed. It is observed that the TiO2–PC composite-mediated photocatalysis has superior degradation performance over that with bare TiO2 treatment. Consequently, the degradation kinetics parameters have also shown significant improvements for cases of TiO2–PC composite-mediated photocatalysis, for which the degradation rate constant has shown an improvement up to 22%, mainly due to the synergistic effect of the TiO2–PC composites. However, the mineralization level is barely improved. It may be noted that the catalyst reusability test has also shown the superiority of TiO2–PC composites over bare TiO2. In addition, the environmental factors such as salt concentration, pH, temperature, mixing/stirring speed and catalyst dose have shown significant influences over the degradation efficiency of these photocatalysts. It is interesting to observe that the alkaline condition (pH > 9.0) favors the improved photocatalytic performance of TiO2–PC composite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    A. Demirbas, J. Hazard. Mater. 167, 1 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.114

    CAS  Article  Google Scholar 

  2. 2.

    H. Ali, Water Air Soil Pollut. 213, 251 (2010). https://doi.org/10.1007/s11270-010-0382-4

    CAS  Article  Google Scholar 

  3. 3.

    Q. Zhou, M. Wang, J. Soils Sedim. 10, 1324 (2010). https://doi.org/10.1007/s11368-010-0247-x

    CAS  Article  Google Scholar 

  4. 4.

    M. Bachratá, A. Šuňovská, M. Horník, M. Pipíška, J. Augustín, Nova Biotechnol. Chim. 12, 12 (2013). https://doi.org/10.2478/nbec-2013-0002

    Google Scholar 

  5. 5.

    J.A. Wilkinson, W. Hoff, J. Phys. Chem. 29, 808 (1925). https://doi.org/10.1021/j150253a005

    CAS  Article  Google Scholar 

  6. 6.

    M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Desalination 280, 1 (2011). https://doi.org/10.1016/j.desal.2011.07.019

    CAS  Article  Google Scholar 

  7. 7.

    M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan et al., Carbohydr. Polym. 113, 115 (2014). https://doi.org/10.1016/j.carbpol.2014.07.007

    CAS  Article  Google Scholar 

  8. 8.

    T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001). https://doi.org/10.1016/S0960-8524(00)00080-8

    CAS  Article  Google Scholar 

  9. 9.

    V.V. Chandanshive, N.R. Rane, A.R. Gholave, S.M. Patil, B.H. Jeon, S.P. Govindwar, Environ. Res. 150, 88 (2016). https://doi.org/10.1016/j.envres.2016.05.047

    CAS  Article  Google Scholar 

  10. 10.

    D. Li, Y. Yang, C. Li, Y. Liu, Environ. Res. 154, 139 (2017). https://doi.org/10.1016/j.envres.2016.12.027

    CAS  Article  Google Scholar 

  11. 11.

    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997 (2010). https://doi.org/10.1016/j.watres.2010.02.039

    CAS  Article  Google Scholar 

  12. 12.

    A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A Chem. 328, 8 (2010). https://doi.org/10.1016/j.molcata.2010.05.023

    CAS  Article  Google Scholar 

  13. 13.

    A.Y.C. Tong, R. Braund, D.S. Warren, B.M. Peake, Cent. Eur. J. Chem. 10, 989 (2012). https://doi.org/10.2478/s11532-012-0049-7

    CAS  Google Scholar 

  14. 14.

    A.C. Affam, M. Chaudhuri, J. Environ. Manag. 130, 160 (2013). https://doi.org/10.1016/j.jenvman.2013.08.058

    CAS  Article  Google Scholar 

  15. 15.

    P.V.L. Reddy, B. Kavitha, P.A.K. Reddy, K.H. Kim, Environ. Res. 154, 296 (2017). https://doi.org/10.1016/j.envres.2017.01.018

    Article  Google Scholar 

  16. 16.

    M. Anpo, Catal. Surv. Jpn. 1(2), 169 (1997). https://doi.org/10.1023/A:1019024913274

    CAS  Article  Google Scholar 

  17. 17.

    B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissière, M. Antonietti, C. Sanchez, Chem. Mater. 16, 2948 (2004). https://doi.org/10.1021/cm0495966

    CAS  Article  Google Scholar 

  18. 18.

    L. An, G. Wang, Y. Cheng, L. Zhao, F. Gao, Y. Tian, Res. Chem. Intermed. 41, 7449 (2015). https://doi.org/10.1007/s11164-014-1836-x

    CAS  Article  Google Scholar 

  19. 19.

    B.E. Castillo-Reyes, V.M. Ovando-Medina, O. González-Ortega, P.A. Alonso-Dávila, I. Juárez-Ramírez, H. Martínez-Gutiérrez, A. Márquez-Herrera, Res. Chem. Intermed. 41, 8211 (2015). https://doi.org/10.1007/s11164-014-1886-0

    CAS  Article  Google Scholar 

  20. 20.

    R. Liang, A. Hu, W. Li, Y.N. Zhou, J. Nanopart. Res. 15, 1990 (2013). https://doi.org/10.1007/s11051-013-1990-x

    Article  Google Scholar 

  21. 21.

    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 634 (2014). https://doi.org/10.1039/c3ta14052k

    Google Scholar 

  22. 22.

    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014). https://doi.org/10.1021/cr5001892

    CAS  Article  Google Scholar 

  23. 23.

    S. Wei, X. Hu, H. Liu, Q. Wang, C. He, J. Hazard. Mater. 294, 168 (2015). https://doi.org/10.1016/j.jhazmat.2015.03.067

    CAS  Article  Google Scholar 

  24. 24.

    R. Zhang, S. Santangelo, E. Fazio, F. Neri, M. D’Arienzo, F. Morazzoni, Y. Zhang, N. Pinna, P.A. Russo, Chem. Eur. J. 21, 14901 (2015). https://doi.org/10.1002/chem.201502433

    CAS  Article  Google Scholar 

  25. 25.

    T.H. Kim, C. Gómez-Solís, E. Moctezuma, S.W. Lee, Res. Chem. Intermed. 40, 1595 (2014). https://doi.org/10.1007/s11164-013-1064-9

    CAS  Article  Google Scholar 

  26. 26.

    L. Zhou, L. Wang, J. Zhang, J. Lei, Y. Liu, Res. Chem. Intermed. 43, 2081 (2017). https://doi.org/10.1007/s11164-016-2748-8

    CAS  Article  Google Scholar 

  27. 27.

    T.Y. Kim, Y.H. Lee, K.H. Park, S.J. Kim, S.Y. Cho, Res. Chem. Intermed. 31, 343 (2005). https://doi.org/10.1163/1568567053956581

    CAS  Article  Google Scholar 

  28. 28.

    J. Araña, J.M. Doña-Rodríguez, E.T. Rendón, C.G. Cabo, O. González-Díaz, J.A. Herrera-Melián, J. Pérez-Peña, G. Colón, J.A. Navío, Appl. Catal. B Environ. 44, 153 (2003). https://doi.org/10.1016/S0926-3373(03)00075-4

    Article  Google Scholar 

  29. 29.

    J. Araña, J.M. Doña-Rodríguez, E.T. Rendón, C.G. Cabo, O. González-Díaz, J.A. Herrera-Melián, J. Pérez-Peña, G. Colón, J.A. Navío, Appl. Catal. B Environ. 44, 161 (2003). https://doi.org/10.1016/S0926-3373(03)00107-3

    Article  Google Scholar 

  30. 30.

    Y. Li, S. Zhang, Q. Yu, W. Yin, Appl. Surf. Sci. 253, 9254 (2007). https://doi.org/10.1016/j.apsusc.2007.05.057

    CAS  Article  Google Scholar 

  31. 31.

    M. Asiltürk, S. Şener, Chem. Eng. J. 180, 354 (2012). https://doi.org/10.1016/j.cej.2011.11.045

    Article  Google Scholar 

  32. 32.

    C. Andriantsiferana, E.F. Mohamed, H. Delmas, Environ. Technol. 35, 355 (2014). https://doi.org/10.1080/09593330.2013.828094

    CAS  Article  Google Scholar 

  33. 33.

    P. Singh, M.C. Vishnu, K.K. Sharma, A. Borthakur, P. Srivastava, D.B. Pal, D. Tiwary, P.K. Mishra, J. Water Process Eng. 12, 20 (2016). https://doi.org/10.1016/j.jwpe.2016.04.007

    Article  Google Scholar 

  34. 34.

    P. Singh, M.C. Vishnu, K.K. Sharma, R. Singh, S. Madhav, D. Tiwary, P.K. Mishra, Desalin. Water Treat. 57, 20552 (2016). https://doi.org/10.1080/19443994.2015.1108871

    CAS  Article  Google Scholar 

  35. 35.

    S. Tamilselvi, M. Asaithambi, P. Sivakumar, Desalin. Water Treat. 57, 15495 (2016). https://doi.org/10.1080/19443994.2015.1071684

    CAS  Article  Google Scholar 

  36. 36.

    A. Eshaghi, S. Hayeripour, A. Eshaghi, Res. Chem. Intermed. 42, 2461 (2016). https://doi.org/10.1007/s11164-015-2161-8

    CAS  Article  Google Scholar 

  37. 37.

    H. Sayğılı, F. Güzel, J. Porous Mater. (2017). https://doi.org/10.1007/s10934-017-0459-1

    Google Scholar 

  38. 38.

    S. Tazibet, L.F. Velasco, P. Lodewyckx, D.A. M’Hamed, Y. Boucheffa, J. Porous Mater. (2017). https://doi.org/10.1007/s10934-017-0444-8

    Google Scholar 

  39. 39.

    P. Verma, S.K. Samanta, Res. Chem. Intermed. 43, 6317 (2017). https://doi.org/10.1007/s11164-017-2992-6

    CAS  Article  Google Scholar 

  40. 40.

    U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.039

    CAS  Article  Google Scholar 

  41. 41.

    G. Imoberdorf, M. Mohseni, J. Hazard. Mater. 186, 240 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.118

    CAS  Article  Google Scholar 

  42. 42.

    X. Zhu, Y. Wang, D. Zhou, J. Soils Sedim. 14, 1350 (2014). https://doi.org/10.1007/s11368-014-0883-7

    CAS  Article  Google Scholar 

  43. 43.

    K.M. Reza, A.S.W. Kurny, F. Gulshan, Appl. Water Sci. (2015). https://doi.org/10.1007/s13201-015-0367-y

    Google Scholar 

  44. 44.

    R. Rezaei, M. Mohseni, Appl. Catal. B Environ. 205, 302 (2017). https://doi.org/10.1016/j.apcatb.2016.12.038

    CAS  Article  Google Scholar 

  45. 45.

    R. Rezaei, M. Mohseni, Chem. Eng. J. 310, 457 (2017). https://doi.org/10.1016/j.cej.2016.05.086

    CAS  Article  Google Scholar 

  46. 46.

    F. Deng, B. Xiong, B. Chen, G. Zheng, J. Zhang, Environ. Sci. Pollut. Res. 23, 13268 (2016). https://doi.org/10.1007/s11356-016-6523-6

    CAS  Article  Google Scholar 

  47. 47.

    D. Li, J. Jia, Y. Zhang, N. Wang, X. Guo, X. Yu, J. Hazard. Mater. 315, 1 (2016). https://doi.org/10.1016/j.jhazmat.2016.04.053

    CAS  Article  Google Scholar 

  48. 48.

    B. Manoj, J. Bioremed. Biodeg. 6, 306 (2015). https://doi.org/10.4172/2155-6199.1000306

    Google Scholar 

  49. 49.

    D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. 156, 200 (2000). https://doi.org/10.1016/S0169-4332(99)00508-5

    CAS  Article  Google Scholar 

  50. 50.

    S. Bakardjieva, J. Šubrt, V. Štengl, M.J. Dianez, M.J. Sayagues, Appl. Catal. B Environ. 58, 193 (2005). https://doi.org/10.1016/j.apcatb.2004.06.019

    CAS  Article  Google Scholar 

  51. 51.

    A. Kafizas, X. Wang, S.R. Pendlebury, P. Barnes, M. Ling, C. Sotelo-Vazquez et al., J. Phys. Chem. A 120, 715 (2016). https://doi.org/10.1021/acs.jpca.5b11567

    CAS  Article  Google Scholar 

  52. 52.

    A. Kaur, A. Umar, S.K. Kansal, J. Colloid Interface Sci. 459, 257 (2015). https://doi.org/10.1016/j.jcis.2015.08.010

    CAS  Article  Google Scholar 

  53. 53.

    I. Karabay, S.A. Yüksel, F. Ongül, S. Öztürk, M. Asli, Acta Phys. Pol. A 121, 265 (2012)

    CAS  Article  Google Scholar 

  54. 54.

    A. Molla, M. Sahu, S. Hussain, Sci. Rep. 6, 26034 (2016). https://doi.org/10.1038/srep26034

    CAS  Article  Google Scholar 

  55. 55.

    Q. Yu, R. Zhang, S. Deng, J. Huang, G. Yu, Water Res. 43, 1150 (2009). https://doi.org/10.1016/j.watres.2008.12.001

    CAS  Article  Google Scholar 

  56. 56.

    S.K. Kansal, M. Chopra, Engineering 4, 416 (2012). https://doi.org/10.4236/eng.2012.48055

    Article  Google Scholar 

  57. 57.

    C.C. Lin, Y.J. Chiang, Chem. Eng. J. 181–182, 196 (2012). https://doi.org/10.1016/j.cej.2011.11.062

    Article  Google Scholar 

  58. 58.

    Ü. Geçgel, O. Üner, G. Gökara, Y. Bayrak, Adsorpt. Sci. Technol. 34, 512 (2016). https://doi.org/10.1177/0263617416669727

    Article  Google Scholar 

  59. 59.

    P. Velmurugan, R.V. Kumar, G. Dhinakaran, Int. J. Environ. Sci. 1, 1492 (2011)

    CAS  Google Scholar 

  60. 60.

    T.A. Khan, I. Ali, V.V. Singh, S. Sharma, J. Environ. Prot. Sci. 3, 11 (2009)

    Google Scholar 

  61. 61.

    T.A. Khan, V.V. Singh, D. Kumar, J. Sci. Ind. Res. 63, 355 (2004)

    CAS  Google Scholar 

  62. 62.

    A.H.A. Dabwan, N. Yuki, N.A.M. Asri, H. Katsumata, T. Suzuki, S. Kaneco, Open J. Inorg. Non-Met. Mater. 5, 21 (2015). https://doi.org/10.4236/ojinm.2015.52003

    CAS  Google Scholar 

  63. 63.

    G.W. Cui, W.L. Wang, M.Y. Ma, M. Zhang, X.Y. Xia, F.Y. Han, X.F. Shi, Y.Q. Zhao, Y.B. Dong, B. Tang, Chem. Commun. 49, 6415 (2013). https://doi.org/10.1039/c3cc42500b

    CAS  Article  Google Scholar 

  64. 64.

    C. Guillard, E. Puzenat, H. Lachheb, A. Houas, J.M. Herrmann, Int. J. Photoenergy 7, 1 (2005). https://doi.org/10.1155/S1110662X05000012

    CAS  Article  Google Scholar 

  65. 65.

    J. Ângelo, P. Magalhães, L. Andrade, A. Mendes, Appl. Surf. Sci. 387, 183 (2016). https://doi.org/10.1016/j.apsusc.2016.06.101

    Article  Google Scholar 

  66. 66.

    J.Y. Liao, X. Xiao, D. Higgins, D. Lee, F. Hassan, Z. Chen, Electrochim. Acta 108, 104 (2013). https://doi.org/10.1016/j.electacta.2013.06.073

    CAS  Article  Google Scholar 

  67. 67.

    M. Bagheri, M. Mohseni, J. Hazard. Mater. 294, 1 (2015). https://doi.org/10.1016/j.jhazmat.2015.03.036

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. A.K. Thakur, Dr. Sushant Kumar and Dr. Subrata Hait from the Indian Institute of Technology Patna for their help, support and cooperation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sujoy Kumar Samanta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4670 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Samanta, S.K. Facile synthesis of TiO2–PC composites for enhanced photocatalytic abatement of multiple pollutant dye mixtures: a comprehensive study on the kinetics, mechanism, and effects of environmental factors. Res Chem Intermed 44, 1963–1988 (2018). https://doi.org/10.1007/s11164-017-3209-8

Download citation

Keywords

  • Photocatalysis
  • Synthetic pollutant dyes
  • TiO2
  • Processed carbon
  • Environmental factors