Skip to main content
Log in

Study on cytotoxicity and photocatalytic properties of different titania/hydroxyapatite nanocomposites prepared with a combination of sol–gel and precipitation methods

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the present study different titania/hydroxyapatite nanocomposites were successfully synthesized via a combination of sol–gel and precipitation methods. Titanium-tetra-isopropoxide, 1-propanol, calcium nitrate tetra-hydrate and orthophosphoric acid were the starting materials. In order to characterize samples, several techniques such as XRD, Raman spectroscopy, FE-SEM, and BET–BJH were used. The photocatalytic activity of nanocomposites was investigated by photodegradation of 10 mg L−1 methylene blue aqueous solution under UV irradiation for 120 min. The dye adsorption of titania in darkness was enhanced from 2.5 to 11.6% for 40 wt% titania/hydroxyapatite nanocomposite. The best photocatalytic efficiency was obtained for 50 wt% titania/hydoxyapatite nanocomposite (90.5%), and the reaction rate constant increased from 0.0186 min−1 for pure titania to 0.0213 min−1 for 50 wt% titania/hydroxyapatite nanocomposite. The improvement in photoactivity of nanocomposite samples is due to high adsorption of dye molecules on hydroxyapatite surfaces and less agglomeration of titania nanopoarticles, for which the last is in accordance with FE-SEM and BET results. The toxic potentials of TiO2 and 50 wt% titania/hydroxyapatite nanocomposite on human normal cell lines were also examined, and the results showed their insignificant effects on HUVEC proliferation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.W. Sabnis, Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications (Wiley, London, 2010), p. 293

    Book  Google Scholar 

  2. A. Fujishima, K. Honda, Nature 238, 5358 (1972)

    Article  Google Scholar 

  3. J.C. Colmenares, Y.J. Xu, Heterogeneous Photocatalysis: From Fundamentals to Green Applications (Springer, Berlin, 2016)

    Book  Google Scholar 

  4. Y. Paz, Solid State Phenom. 162, 135–162 (2010)

    Article  CAS  Google Scholar 

  5. M. Lu, P. Pichat, Photocatalysis and Water Purification: From Fundamentals to Recent Applications (Wiley, London, 2013), pp. 103–131

    Google Scholar 

  6. T. Giannakopoulou, N. Todorova, G. Romanos, T. Vaimakis, R. Dillert, D. Bahnemann, C. Trapalis, Mater. Sci. Eng. B 177, 13 (2012)

    Article  Google Scholar 

  7. S. Sharifat, H. Zolgharnein, A. Hamidifalahi, M. Enayati-Jazi, E. Hamid, Advanced Materials Research (Trans Tech Publications Ltd, Zurich, 2014), pp. 594–599

    Google Scholar 

  8. A.J. Nathanael, D. Mangalaraj, P.C. Chen, N. Ponpandian, Compos. Sci. Technol. 70, 3 (2010)

    Article  Google Scholar 

  9. K. Soysal, J. Park, S. You, D. Shin, W. Bae, A. Ozturk, J. Ceram. Process. Res. 12, 2 (2011)

    Google Scholar 

  10. N. Phonthammachai, J. Kim, T. White, J. Mater. Res. 23, 09 (2008)

    Article  Google Scholar 

  11. N. Lewinski, V. Colvin, R. Drezek, Small 4, 1 (2008)

    Article  Google Scholar 

  12. B. Cervantes, F. López-Huerta, R. Vega, J. Hernández-Torres, L. García-González, E. Salceda, A.L. Herrera-May, E. Soto, Materials 9, 8 (2016)

    Article  Google Scholar 

  13. P. Ramires, F. Cosentino, E. Milella, P. Torricelli, G. Giavaresi, R. Giardino, J. Mater. Sci. Mater. Med. 13, 8 (2002)

    Google Scholar 

  14. P. Ramires, A. Romito, F. Cosentino, E. Milella, Biomaterials 22, 12 (2001)

    Article  Google Scholar 

  15. P.C. Rath, L. Besra, B.P. Singh, S. Bhattacharjee, Ceram. Int. 38, 4 (2012)

    Article  Google Scholar 

  16. H.W. Kim, H.E. Kim, V. Salih, J.C. Knowles, J. Biomed. Mater. Res. Part B: Appl. Biomater. 72, 1 (2005)

    Article  Google Scholar 

  17. A. Hu, M. Li, C. Chang, D. Mao, J. Mol. Catal. A: Chem. 267, 1 (2007)

    Article  Google Scholar 

  18. J. Wang, C. Li, X. Luan, J. Li, B. Wang, L. Zhang, R. Xu, X. Zhang, J. Mol. Catal. A: Chem. 320, 1 (2010)

    Article  Google Scholar 

  19. H. Moghtaderi, H. Sepehri, F. Attari, Biomed. Pharmacother. 88, 582 (2017)

    Article  CAS  Google Scholar 

  20. S. Rahimnejad, M.B. Torbati, J. Chem. Health Risks 6, 3 (2016)

    Google Scholar 

  21. A.J. Nathanael, D. Mangalaraj, N. Ponpandian, Compos. Sci. Technol. 70, 11 (2010)

    Article  Google Scholar 

  22. M. Nasir, S. Bagwasi, Y. Jiao, F. Chen, B. Tian, J. Zhang, Chem. Eng. J. 236, 388 (2014)

    Article  CAS  Google Scholar 

  23. Q. Liu, D. Ding, C. Ning, X. Wang, Int. J. Hydrogen Energy 40, 5 (2015)

    Google Scholar 

  24. C. Huang, X. Liu, Y. Liu, Y. Wang, Chem. Phys. Lett. 432, 4 (2006)

    Article  Google Scholar 

  25. S. Koutsopoulos, J. Biomed. Mater. Res. Part A 62, 4 (2002)

    Article  Google Scholar 

  26. V.V. Nosenko, A.M. Yaremko, V.M. Dzhagan, I.P. Vorona, Y.A. Romanyuk, I.V. Zatovsky, J. Raman Spectrosc. 47, 6 (2016)

    Article  Google Scholar 

  27. Y. Yang, H. Zhong, C. Tian, Res. Chem. Intermed. 37, 1 (2011)

    Article  Google Scholar 

  28. J. Nowotny, M.K. Nowotny, Solid State Chemistry and Photocatalysis of Titanium Dioxide: Special Topic Volume with Invited Peer Reviewed Papers Only (Trans Tech Publications Ltd, Zurich, 2010)

    Google Scholar 

  29. N. Monmaturapoj, W. Thepsuwan, K. Mai-Ngam, S. Ngernpimai, W. Klinsukhon, C. Prahsarn, Adv. Appl. Ceram. 113, 5 (2014)

    Article  Google Scholar 

  30. J. Huang, Y. Liu, Y. Liu, H. Li, Mater. Chem. Phys. 151, 1 (2015)

    Article  Google Scholar 

  31. H. Anmin, L. Tong, L. Ming, C. Chengkang, L. Huiqin, M. Dali, Appl. Catal. B 63, 1 (2006)

    Article  Google Scholar 

  32. N. Takeda, T. Torimoto, S. Sampath, S. Kuwabata, H. Yoneyama, J. Phys. Chem. 99, 24 (1995)

    Google Scholar 

  33. T. Horikawa, D. Do, D. Nicholson, Adv. Colloid Interface. Sci. 169, 1 (2011)

    Article  Google Scholar 

  34. M. Jayaraman, U. Meyer, M. Bühner, U. Joos, H.-P. Wiesmann, Biomaterials 25, 4 (2004)

    Article  Google Scholar 

  35. K.-H. Im, M.-C. Kim, D.-K. Kang, K.-N. Kim, K.-M. Kim and Y.-K. Lee, Biomat. Res. 10, 224 (2006)

  36. A. Nathanael, D. Mangalaraj, S. Hong, in 18th International Conference on Composite Materials (ICCM 2011) (2011)

  37. Y.H. Siddique, W. Khan, S. Khanam, S. Jyoti, F. Naz, B.R. Singh, A.H. Naqvi, BioMed Res. Int. 2014, 11 (2014)

    Google Scholar 

  38. Z. Singh, Nanotechnology, Science and Applications (Dove Press, Princeton, 2016), p. 9

    Google Scholar 

Download references

Acknowledgments

This work was performed with research funds from Tarbiat Modares University (TMU) and the Institute for Color Science and Technology (ICST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Taheri-Nassaj.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohseni-Salehi, M.S., Taheri-Nassaj, E. & Hosseini-Zori, M. Study on cytotoxicity and photocatalytic properties of different titania/hydroxyapatite nanocomposites prepared with a combination of sol–gel and precipitation methods. Res Chem Intermed 44, 1945–1962 (2018). https://doi.org/10.1007/s11164-017-3208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3208-9

Keywords

Navigation