Research on Chemical Intermediates

, Volume 44, Issue 3, pp 1797–1810 | Cite as

Solvent-free synthesis of Ser–His dipeptide from non-activated amino acids and its potential function as organocatalyst

  • Marco Fabbiani
  • Erica Rebba
  • Marco Pazzi
  • Marco Vincenti
  • Ettore Fois
  • Gianmario Martra


Short homopeptides (up to 3-mer) of serine and histidine, as well as Ser–His and His–Ser hetero-dipeptides, are produced from non-activated amino acids by using facile chemical vapor deposition and TiO2 nanoparticles as catalyst. The assessment of the formation of peptides is based on spectroscopic data such as in situ FT-IR and mass spectrometry. Evidence of the capability of Ser–His to promote hydrolysis of peptide bonds in hexaglycine is provided, contributing to the debate on the effectiveness of this dipeptide as an organocatalyst.


FT-IR of adsorbed species Peptides Serine Histidine CVD 



This work was carried out in the frame of the project DAMA_RILO_16_01, funded by the University of Torino.

Supplementary material

11164_2017_3198_MOESM1_ESM.docx (853 kb)
Supplementary material 1 (DOCX 853 kb)


  1. 1.
    T. Uhlig, T. Kyprianou, F.G. Martinelli, C.A. Oppici, D. Heiligers, D. Hills, X.R. Calvo, P. Verhaert, EuPA Open Proteom. 4, 58–69 (2014)CrossRefGoogle Scholar
  2. 2.
    K. Fosgerau, T. Hoffmann, Drug Discov. Today 20, 122–128 (2015)CrossRefGoogle Scholar
  3. 3.
    V.R. Pattabiraman, J.W. Bode, Nature 480, 471–479 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Rodriguez-Garcia, A.J. Surman, G.J.T. Cooper, I. Suárez-Marina, Z. Hosni, M.P. Lee, L. Cronin, Nature 6, 8385 (2015)Google Scholar
  5. 5.
    J.-F. Lambert, Orig. Life Evol. Biosph. 38, 211–242 (2008)CrossRefGoogle Scholar
  6. 6.
    A.R. Mitchell, Pept. Sci. 90, 175–184 (2008)CrossRefGoogle Scholar
  7. 7.
    J.M. Collins, K.A. Porter, S.K. Singh, G.S. Vanier, Org. Lett. 16, 940–943 (2014)CrossRefGoogle Scholar
  8. 8.
    T. Mohy El Dine, W. Erb, Y. Berhault, J. Rouden, J. Blanchet, J. Org. Chem. 80, 4532–4544 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Guo, J.S. Jordan, J.L. Yarger, G.P. Holland, A.C.S. Appl, Mater. Interfaces 9, 17653–17661 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Georgelin, M. Akouche, M. Jaber, Y. Sakhno, L. Matheron, F. Fournier, C. Méthivier, G. Martra, J.-F. Lambert, Eur. J. Inorg. Chem. 2017, 198–211 (2017)CrossRefGoogle Scholar
  11. 11.
    E.-I. Imai, H. Honda, K. Hatori, K. Matsuno, Orig. Life Evol. Biosph. 29, 249–259 (1999)CrossRefGoogle Scholar
  12. 12.
    M. Meng, L. Stievano, J.-F. Lambert, Langmuir 20, 914–923 (2004)CrossRefGoogle Scholar
  13. 13.
    U. Shanker, B. Bhushan, G. Bhattacharjee, Origins Life Evol. Biospheres 42, 31–45 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Furukawa, T. Otake, T. Ishiguro, H. Nakazawa, T. Kakegawa, Orig. Life Evol. Biosph. 42, 519–531 (2012)CrossRefGoogle Scholar
  15. 15.
    T. Munegumi, N. Tanikawa, Orig. Life Evol. Biosph. (2017). Google Scholar
  16. 16.
    G. Martra, C. Deiana, Y. Sakhno, I. Barberis, M. Fabbiani, M. Pazzi, M. Vincenti, Angew. Chem. Int. Ed. 53, 4671–4674 (2014)CrossRefGoogle Scholar
  17. 17.
    D. Gross, G. Grodsky, J. Am. Chem. Soc. 77, 1678–1680 (1955)CrossRefGoogle Scholar
  18. 18.
    O.D. Ekici, M. Paetzel, R.E. Dalbey, Prot. Sci. 17, 2023–2037 (2008)CrossRefGoogle Scholar
  19. 19.
    G.M. Simon, B.F. Cravatt, J. Biol. Chem. 285, 11051–11055 (2010)CrossRefGoogle Scholar
  20. 20.
    K.L. Duncan, R.V. Ulijn, Biocatalysis 1, 67 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Hatfield, Y. Li, Y. Zhao, R. Wan, M. McMills, J. Li, X. Chen, FASEB J. 14, A1323 (2000)Google Scholar
  22. 22.
    Y.S. Li, Y.F. Zhao, S. Hatfield, R. Wan, Q. Zhu, X.H. Li, M. McMills, Y. Ma, J. Li, K.L. Brown, C. He, F. Liu, X.Z. Chen, Bioorg. Med. Chem. 8, 2675–2680 (2000)CrossRefGoogle Scholar
  23. 23.
    J. Chen, R. Wan, H. Liu, C.M. Cheng, Y.F. Zhao, Lett. Pept. Sci. 7, 325–329 (2000)Google Scholar
  24. 24.
    H.L. Du, Y.T. Wang, L.F. Yang, W.X. Luo, N.S. Xia, Y.F. Zhao, Lett. Pept. Sci. 9, 5–10 (2002)Google Scholar
  25. 25.
    Y. Ma, X. Chen, M. Sun, R. Wan, C. Zhu, Y. Li, Y. Zhao, Amino Acids 35, 251–256 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Sun, Y. Ma, S.H. Ji, H.N. Liu, Y.F. Zhao, Bioorg. Med. Chem. Lett. 14, 3711–3714 (2004)CrossRefGoogle Scholar
  27. 27.
    P.Y. Chen, Y. Liu, X. Gao, N.S. Xu, J. Niu, S.Y. Liu, Y.F. Zhao, Phosphorus Sulfur Silicon Relat. Elem. 186, 933–935 (2011)CrossRefGoogle Scholar
  28. 28.
    M.J. MacDonald, L.D. Lavis, D. Hilvert, S.H. Gellman, Org. Lett. 18, 3518–3521 (2016)CrossRefGoogle Scholar
  29. 29.
    C. Deiana, E. Fois, S. Coluccia, G. Martra, J. Phys. Chem. C 114, 21531–21538 (2010)CrossRefGoogle Scholar
  30. 30.
    P.I. Haris, D. Chapman, Biopolymers 37, 251–263 (1995)CrossRefGoogle Scholar
  31. 31.
    K. Hasegawa, T.-A. Ono, T. Noguchi, J. Phys. Chem. B 104, 4253–4265 (2000)CrossRefGoogle Scholar
  32. 32.
    N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd edn. (Academic Press, San Diego, 1990), pp. 215–233CrossRefGoogle Scholar
  33. 33.
    L.J. Bellamy, S. Krimm, Journal of Polymer Science: Polymer Letters Edition (Wiley, New York, 1975)Google Scholar
  34. 34.
    A. Rimola, Y. Sakhno, L. Bertinetti, M. Lelli, G. Martra, P. Ugliengo, J. Phys. Chem. Lett. 2, 1390–1394 (2011)CrossRefGoogle Scholar
  35. 35.
    P. Yang, R. Xu, S.C. Nanita, R.G. Cooks, J. Am. Chem. Soc. 128, 17074–17086 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Science and High TechnologyUniversity of InsubriaComoItaly
  2. 2.Department of ChemistryUniversity of TorinoTurinItaly

Personalised recommendations