In vitro α-glucosidase and α-amylase inhibition, and in vivo anti-hyperglycemic effects of Psidium littorale Raddi leaf extract

  • Quang Vinh Nguyen
  • San-Lang Wang
  • Anh Dzung Nguyen
Article
  • 17 Downloads

Abstract

Guava, belonging to family Myrtaceae, is widely grown in tropical countries. Different parts of guava are reported to have long been used in folk medicine. In this study, the in vitro and in vivo anti-hyperglycemic activities of Psidium littorale Raddi leaves extract were investigated. The results indicated that the leaf extract demonstrates relatively high intestinal α-glucosidase inhibitory activity in rats, twice as high as acarbose. In addition, the extract also induced lowering fasting blood glucose levels in streptozotocin- induced diabetic rats at the dose of 150 mg/kg body weight, and without any effect on normal rats. Moreover, the extract did not significantly induce body weight loss in rats. The results suggest that P. littorale Raddi may prove to be useful in treating diabetes in humans.

Keywords

Antidiabetic Psidium littorale Raddi DPPH α-amylase α-glucosidase 

Notes

Acknowledgements

We would like to express our thanks to the Department of Science and Technology, Dak Lak Province, Vietnam (2550/QĐ.UBND 05.12.2013) for a grant awarded to us to finish this work.

References

  1. 1.
    P.Z. Zimmet, D.J. Magliano, W.H. Herman, J.E. Shaw, Lancet Diabetes Endocrinol. 22, 56 (2014)CrossRefGoogle Scholar
  2. 2.
    M.C. Deshpande, V. Venkateswarlu, R.K. Babu, R.K. Trivedi, Int. J. Pharm. 380, 16 (2009)CrossRefGoogle Scholar
  3. 3.
    A.J. Hirsh, S.Y. Yao, J.D. Young, C.I. Cheeseman, Gastroenterology 113, 205 (1997)CrossRefGoogle Scholar
  4. 4.
    M. Brownlee, Diabetes 54, 1615 (2005)CrossRefGoogle Scholar
  5. 5.
    Y.I. Kwon, D.A. Vattem, K. Shetty, Asia Pac. J. Clin. Nutr. 15, 107 (2005)Google Scholar
  6. 6.
    D.M. Nathan, J.B. Buse, M.B. Davidson, E. Ferrannini, R.R. Holman, R. Sherwin, B. Zinman, Diabetologia 51, 8 (2008)CrossRefGoogle Scholar
  7. 7.
    P.K. Mukherjee, K. Maiti, K. Mukherjee, P.J. Houghton, J. Ethnopharmacol. 106, 1 (2006)CrossRefGoogle Scholar
  8. 8.
    D.C. Elixabet, R.N. Alba, A. Francesca, R. Miguel, V. Vito, S.C. Antonio, D. Juan, G. Julio, Food Res. Int. 6, 64 (2017)Google Scholar
  9. 9.
    S. Mazumdar, R. Akter, D. Talukde, Asian Pac. J. Trop. Biomed. 5, 10 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Huang, M.C. Yin, L.C. Chiu, Food Chem. Toxicol. 49, 2189 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Deguchi, K. Miyazaki, Nutr. Metab. (Lond) 2, 7 (2010)Google Scholar
  12. 12.
    O. Folin, V. Ciocalteu, J. Biol. Chem. 27, 627 (1927)Google Scholar
  13. 13.
    Q.V. Nguyen, J.B. Eun, J. Med. Plants Res. 5, 2798 (2011)Google Scholar
  14. 14.
    Z. Jia, M. Tang, J. Wu, Food Chem. 64, 555 (1999)CrossRefGoogle Scholar
  15. 15.
    Y.I. Kwon, D.A. Vattem, K. Shetty, Asian Pac. J. Clin. Nutr. 15, 107 (2006)Google Scholar
  16. 16.
    Q.V. Nguyen, V.B. Nguyen, J.B. Eun, S.L. Wang, D.H. Nguyen, T.N. Tran, A.D. Nguyen, Res. Chem. Intermed. 42, 5859 (2016)CrossRefGoogle Scholar
  17. 17.
    OECD, OECD Guidelines for Testing of Chemicals 423: Acute Oral Toxicity-Acute Toxic Class Method (OECD, Paris, 2001)Google Scholar
  18. 18.
    S. Ramachandran, K. Asokkumar, M. Uma Maheswari, T.K. Ravi, A.T. Sivashanmugam, S. Saravanan, Evid. Based Complement Alternat. Med. 57, 17 (2011)Google Scholar
  19. 19.
    M. Lopez-Velez, F. Martinez-Martinez, C.D. Valle-ribes, Crit. Rev. Food Sci. Nutr. 43, 233 (2003)CrossRefGoogle Scholar
  20. 20.
    M.R. Law, J.K. Morris, Eur. J. Clin. Nutr. 52, 549 (1998)CrossRefGoogle Scholar
  21. 21.
    E. Riboli, T. Norat, Am. J. Clin. Nutr. 78, 559S (2003)Google Scholar
  22. 22.
    N.K. Catherine, K.I. Jasper, W.O. Michael, K.B. Hans, V. Vellingiri, LWT Food Sci. Tech. 45, 269 (2012)CrossRefGoogle Scholar
  23. 23.
    K.B. Pandey, S. Rizvi, Integr. Med. Res. 3, 119 (2014)CrossRefGoogle Scholar
  24. 24.
    V. Vats, J.K. Grover, S.S. Rathi, J. Ethnopharma. 79, 95 (2002)CrossRefGoogle Scholar
  25. 25.
    T. Kathirvel, K. Prabhakar, S. Vinoth, S. Sadasivam, B. Thayumanavan, Int. J. Pharm. Sci. Res. 3, 316 (2012)Google Scholar
  26. 26.
    A.J. Krentz, C.J. Bailey, Drugs 65, 385 (2005)CrossRefGoogle Scholar
  27. 27.
    M. Gray, Y.H.A. Abdel-Wahab, P.R. Flatt, J. Nutr. 130, 15 (2000)Google Scholar
  28. 28.
    C. Palanuvej, S. Hokputsa, T. Tunsaringkarn, N. Ruangrungsi, Thai Med. Plants Sci. Pharm. 77, 837 (2009)Google Scholar
  29. 29.
    T. Hanamura, H. Toshihiko, K. Hirokazu, Biosci. Biotechnol. Biochem. 69, 280 (2005)CrossRefGoogle Scholar
  30. 30.
    J.Y. Youn, H.Y. Park, K.H. Cho, Diabetes Res. Clin. Pract. 66S, S149 (2004)CrossRefGoogle Scholar
  31. 31.
    T.T. Mai, N.N. Thu, P.G. Tien, N.V. Chuyen, J. Nutr. Sci. Vitaminol. (Tokyo) 53, 267 (2007)CrossRefGoogle Scholar
  32. 32.
    U.N. Sukohar, M. Samsu, S. Diana, Arli. Int. J. Res. Ayurveda Pharm. 8, 86 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Quang Vinh Nguyen
    • 1
  • San-Lang Wang
    • 2
  • Anh Dzung Nguyen
    • 1
  1. 1.Institute of Biotechnology and EnvironmentTay Nguyen UniversityBuon Ma Thuot CityVietnam
  2. 2.Department of ChemistryTamkang UniversityNew TaipeiTaiwan

Personalised recommendations