Research on Chemical Intermediates

, Volume 44, Issue 3, pp 1647–1660 | Cite as

Sheet-like orthorhombic MoO3 nanostructures prepared via hydrothermal approach for visible-light-driven photocatalytic application

  • Rajeswari Rathnasamy
  • Rangasamy Thangamuthu
  • Viswanathan Alagan


In the present work, sheet-like α-MoO3 nanostructures (NS) were prepared by a simple hydrothermal method using ammonium heptamolybdate tetrahydrate as a molybdenum source and nitric acid. The synthesized α-MoO3 NS have been characterized structurally and morphologically using various analytical techniques. The PXRD, FT-IR, Raman and XPS spectroscopic analysis results revealed the formation of phase pure α-MoO3. The SEM–EDX analysis further confirms the purity of the synthesized α-MoO3 NS. FE-SEM and HR-TEM results indicated that the synthesized α-MoO3 has sheet-like morphology. Further, the obtained α-MoO3 NS could be used as the effective photocatalyst for the degradation of methylene blue and rhodamine B dyes. It was found that > 95% dye degradation efficiency was achieved for both the organic dyes within 90 min irradiation times. This enhanced photocatalytic activity of α-MoO3 can be attributed to the presence of a greater number of active sites in the sheet-like morphology that are more vulnerable for adsorption of organic dyes and subsequent elimination by decomposition under visible-light condition.

Graphical Abstract


α-MoO3 nanostructures Hydrothermal method Photocatalyst Degradation Organic dyes 



The authors are very thankful for the provided financial support through the Technical Education Quality Improvement program (TEQIP II), Anna University, BIT Campus, Tiruchirappalli, India. Also, CSIR-CECRI, Karaikudi, is acknowledged for providing lab facility and a Central Instrumentation Facility.

Compliance with ethical standards

Conflicts of interest

The authors declare that there is no conflict of interest.


  1. 1.
    I. Shakir, M. Shahid, U.A. Rana, M.F. Warsi, RSC Adv. 4, 8741–8745 (2014)CrossRefGoogle Scholar
  2. 2.
    G. Fu, X. Xu, X. Lu, H. Wan, J. Am. Chem. Soc. 127, 3989–3996 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Khademi, R. Azimirad, A.A. Zavarian, A.Z. Moshfegh, J. Phys. Chem. C 113, 19298–19304 (2009)CrossRefGoogle Scholar
  4. 4.
    Z. Lei, X. Yang, J. Dong, X. Yi, Chem. Mater. 21, 5681–5690 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Zhou, N.S. Xu, S.Z. Deng, J. Chen, J.C. She, Z.L. Wang, Adv. Mater. 15, 1835–1840 (2003)CrossRefGoogle Scholar
  6. 6.
    L. Mai, B. Hu, W. Chen, Y. Qi, C. Lao, R. Yang, Y. Dai, Z.L. Wang, Adv. Mater. 19, 3712–3716 (2007)CrossRefGoogle Scholar
  7. 7.
    X. Hu, W. Zhang, X. Liu, Y. Mei, Y. Huang, Chem. Soc. Rev. 44, 2376–2404 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Thangasamy, N. Ilayaraja, D. Jeyakumar, M. Sathish, Chem. Commun. 53, 2245–2248 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Chithambararaj, N. Rajeswari Yogamalar, A.C. Bose, Cryst. Growth Des. 16, 1984–1995 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Epifani, P. Imperatori, L. Mirenghi, M. Schioppa, P. Siciliano, Chem. Mater. 16, 5495–5501 (2004)CrossRefGoogle Scholar
  11. 11.
    L. Wang, X. Zhang, Y. Ma, M. Yang, Y. Qi, Mater. Lett. 164, 623–626 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Ashraf, C.S. Blackman, G. Hyett, I.P. Parkin, J. Mater. Chem. 16, 3575–3582 (2006)CrossRefGoogle Scholar
  13. 13.
    G. Jodhani, J. Huang, P. Gouma, J. Nanotechnol. (2016). Google Scholar
  14. 14.
    N.A. Dhas, A. Gedanken, Chem. Mater. 9, 3144–3154 (1997)CrossRefGoogle Scholar
  15. 15.
    C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, Sens. Actuators B Chem. 78, 119–125 (2001)CrossRefGoogle Scholar
  16. 16.
    A. Michailovski, J.D. Grunwaldt, A. Baiker, R. Kiebach, W. Bensch, G.R. Patzke, Angew. Chem. Int. Ed. 44, 5643–5647 (2005)CrossRefGoogle Scholar
  17. 17.
    H.C. Zeng, F. Xie, K.C. Wong, K.A.R. Mitchell, Chem. Mater. 14, 1788–1796 (2002)CrossRefGoogle Scholar
  18. 18.
    P. Wongkrua, T. Thongtem, S. Thongtem, J. Nanomater. (2013). Google Scholar
  19. 19.
    M.Y. Nassar, A.S. Attia, K.A. Alfallous, M.F. El-Shahat, Inorg. Chim. Acta 405, 362–367 (2013)CrossRefGoogle Scholar
  20. 20.
    M.Y. Nassar, S. Abdallah, RSC Adv. 6, 84050–84067 (2016)CrossRefGoogle Scholar
  21. 21.
    M.Y. Nassar, M. Khatab, RSC Adv. 6, 79688–79705 (2016)CrossRefGoogle Scholar
  22. 22.
    M.Y. Nassar, A.S. Amin, I.S. Ahmed, S. Abdallah, J. Taiwan Inst. Chem. Eng. 64, 79–88 (2016)CrossRefGoogle Scholar
  23. 23.
    M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, N.M. Mohamed, M. Khatab, J. Inorg. Organomet. Polym. 27, 1526–1537 (2017)CrossRefGoogle Scholar
  24. 24.
    V. Kumar, X. Wang, P.S. Lee, CrystEngComm 15, 7663–7669 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Song, X. Ni, D. Zhang, H. Zheng, Solid State Sci. 8, 1164–1167 (2006)CrossRefGoogle Scholar
  26. 26.
    I.J. Ramirez, A.M. la Cruz, Mater. Lett. 57, 1034–1039 (2003)CrossRefGoogle Scholar
  27. 27.
    M.Y. Nassar, A.A. Ali, A.S. Amin, RSC Adv. 7, 30411–30421 (2017)CrossRefGoogle Scholar
  28. 28.
    M.Y. Nassar, E.I. Ali, E.S. Zakaria, RSC Adv. 7, 8034–8050 (2017)CrossRefGoogle Scholar
  29. 29.
    M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, I. Samir, J. Mol. Liq. 225, 730–740 (2017)CrossRefGoogle Scholar
  30. 30.
    M.Y. Nassar, M.M. Moustafa, M.M. Taha, RSC Adv. 6, 42180–42195 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, RSC Adv. 4, 37003–37026 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Kumar, G. Sharma, M. Naushad, P. Singh, S. Kalia, Ind. Eng. Chem. Res. 53, 15549–15560 (2014)CrossRefGoogle Scholar
  33. 33.
    N.L. Stock, J. Peller, K. Vinodgopal, P.V. Kamat, Environ. Sci. Technol. 34, 1747–1750 (2000)CrossRefGoogle Scholar
  34. 34.
    A.T. Kuvarega, R.W.M. Krause, B.B. Mamba, J. Phys. Chem. C 115, 22110–22120 (2011)CrossRefGoogle Scholar
  35. 35.
    M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Energy Environ. Sci. 2, 1231–1257 (2009)CrossRefGoogle Scholar
  36. 36.
    M.R. Hoffmann, S. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  37. 37.
    H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19, 5089–5121 (2009)CrossRefGoogle Scholar
  38. 38.
    Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J.-J. Zhu, CrystEngComm 12, 3740–3747 (2010)CrossRefGoogle Scholar
  39. 39.
    J. Liu, Y. Lu, J. Liu, X. Yang, X. Yu, J. Alloys Compd. 496, 261–264 (2010)CrossRefGoogle Scholar
  40. 40.
    P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123–134 (2014)CrossRefGoogle Scholar
  41. 41.
    C.M. Manna, M.Y. Nassar, D. Tofan, K. Chakarawet, C.C. Cummins, Dalton Trans. 43, 1509–1518 (2014)CrossRefGoogle Scholar
  42. 42.
    R. Liang, H. Cao, D. Qian, Chem. Commun. 47, 10305–10307 (2011)CrossRefGoogle Scholar
  43. 43.
    M.Y. Nassar, H.M. Aly, E.A. Abdelrahman, M.E. Moustafa, J. Mol. Struct. 1143, 462–471 (2017)CrossRefGoogle Scholar
  44. 44.
    M.Y. Nassar, H.M. Aly, M.E. Moustafa, E.A. Abdelrahman, J. Inorg. Organomet. Polym. 27, 1220–1233 (2017)CrossRefGoogle Scholar
  45. 45.
    M. Mostafa, H.M. Sabera, A.A. El-Sadeka, M.Y. Nassarb, A.S. Aminb, Radiochemistry 58, 409–414 (2016)CrossRefGoogle Scholar
  46. 46.
    H.M. Aly, M.E. Moustafa, M.Y. Nassar, E.A. Abdelrahman, J. Mol. Struct. 1086, 223–231 (2015)CrossRefGoogle Scholar
  47. 47.
    M.Y. Nassar, E.A. Abdelrahman, J. Mol. Liq. 242, 364–374 (2017)CrossRefGoogle Scholar
  48. 48.
    T. Siciliano, A. Tepore, E. Filippo, G. Micocci, M. Tepore, Mater. Chem. Phys. 114, 687–691 (2009)CrossRefGoogle Scholar
  49. 49.
    K. Kalantar-zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, R.B. Kaner, Nanoscale 2, 429–433 (2010)CrossRefGoogle Scholar
  50. 50.
    X. Zhang, M. Yang, X. Zeng, Y. Qi, Mater. Lett. 109, 120–123 (2013)CrossRefGoogle Scholar
  51. 51.
    P. Kumar, M. Govindaraju, S. Senthamilselvi, K. Premkumar, Colloids Surf. B Biointerfaces 103, 658–661 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Rajeswari Rathnasamy
    • 1
    • 2
  • Rangasamy Thangamuthu
    • 2
  • Viswanathan Alagan
    • 1
  1. 1.Department of PhysicsUniversity College of Engineering, Bharathidasan Institute of Technology (BIT) Campus, Anna UniversityTiruchirappalliIndia
  2. 2.Electrochemical Materials Science DivisionCSIR-Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations