Synthesis of alkyl α- and β-d-glucopyranoside-based chiral crown ethers and their application as enantioselective phase-transfer catalysts

  • Ádám Pálvölgyi
  • Zsolt Rapi
  • Olivér Ozohanics
  • Gábor Tóth
  • György Keglevich
  • Péter Bakó
Article

Abstract

Chiral monoaza-15-crown-5-type lariat ethers annelated to alkyl 4,6-O-benzylidene-α- and β-d-glucopyranosides have been synthesized. These macrocycles generated significant asymmetric induction as phase-transfer catalysts in a few two-phase reactions. The catalytic effect of the lariat ethers with methoxy, ethoxy, and i-propoxy substituents on C-1 of the sugar unit in both α and β positions was compared. In liquid–liquid two-phase reactions, the nature and position of the substituents did not have much effect. The α-anomers were somewhat more efficient in terms of enantioselectivity than the β forms. In asymmetric Darzens condensations, in the epoxidation of trans-chalcone, in the Michael addition of β-nitrostyrene and diethyl acetamidomalonate, and in the reaction of 2-benzylidene-1,3-indandione with diethyl bromomalonate, maximum enantioselectivities of 73, 94, 78, and 72%, respectively, were obtained in presence of glucopyranoside-based lariat ethers as catalysts.

Keywords

Chiral crown ether Asymmetric reaction Phase-transfer catalysis 

Notes

Acknowledgements

This work was financially supported by the Hungarian Scientific Research Found (OTKA PD no. 112166).

References

  1. 1.
    D.J. Cram, G.D.Y. Sogah, J. Chem. Soc. Chem. Commun. 625–627 (1981)Google Scholar
  2. 2.
    H. Alper, Adv. Organomet. Chem. 19, 183–211 (1981)CrossRefGoogle Scholar
  3. 3.
    C.M. Starks, C.L. Liotta, M.E. Halpern, Phase Transfer Catalysis (Chapman & Hall, New York, 1994)CrossRefGoogle Scholar
  4. 4.
    T. Shioiri, in Handbook of Phase Transfer Catalysis, ed. by Y. Sasson, R. Neumann (Blackie Academic & Professional, London, 1997), pp. 462–469CrossRefGoogle Scholar
  5. 5.
    M.I.O’. Donnell, in Asymmetric Phase-Transfer Reactions, 2nd edn., ed. by I. Ojima (Wiley-VCH, New York, 2000), pp. 231–280Google Scholar
  6. 6.
    T. Hashimoto, K. Maruoka, Chem. Rev. 107, 5656–5682 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Marouka, Asymmetric Phase Transfer Catalysis (Wiley-VCH, Weinheim, 2008)CrossRefGoogle Scholar
  8. 8.
    S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 52, 4312–4348 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Kaneko, Y. Kumatabara, S. Shirakawa, Org. Biomol. Chem. 14, 5367–5376 (2016)CrossRefGoogle Scholar
  10. 10.
    D.C.M. Albanese, F. Foschi, M. Penso, Org. Process Res. Dev. 20, 129–139 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Zong, C.-H. Tan, Acc. Chem. Res. 50, 642–856 (2017)CrossRefGoogle Scholar
  12. 12.
    J.F. Stoddart, in Progress in Macrocyclic Chemistry, vol. 2, ed. by R.M. Izatt, J.J. Christensen (Wiley, New York, 1981), pp. 173–250Google Scholar
  13. 13.
    J.F. Stoddart, Top. Stereochem. 17, 207–288 (1987)CrossRefGoogle Scholar
  14. 14.
    S. Jarosz, A. Listkowski, Curr. Org. Chem. 10, 643–662 (2006). (Review) CrossRefGoogle Scholar
  15. 15.
    P. Bakó, G. Keglevich, Z. Rapi, Lett. Org. Chem. 7, 645–656 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Itoh, S. Shirakami, Heterocycles 55, 37–43 (2001)CrossRefGoogle Scholar
  17. 17.
    A. Makó, Z. Rapi, G. Keglevich, Á. Szöllősy, L. Drahos, L. Hegedűs, P. Bakó, Tetrahedron Asymmetry 21, 919–925 (2010)CrossRefGoogle Scholar
  18. 18.
    Z. Rapi, P. Bakó, G. Keglevich, Á. Szöllősy, L. Drahos, A. Botyánszki, T. Holczbauer, Tetrahedron Asymmetry 23, 489–496 (2012)CrossRefGoogle Scholar
  19. 19.
    Z. Rapi, B. Démuth, G. Keglevich, A. Grün, L. Drahos, P.L. Sóti, P. Bakó, Tetrahedron Asymmetry 25, 141–147 (2014)CrossRefGoogle Scholar
  20. 20.
    P. Bakó, Z. Rapi, A. Grün, T. Nemcsok, L. Hegedűs, G. Keglevich, Synlett 26, 1847–1851 (2015)CrossRefGoogle Scholar
  21. 21.
    Z. Rapi, A. Grün, T. Nemcsok, D. Hessz, M. Kállay, M. Kubunyi, G. Keglevich, P. Bakó, Tetrahedron Asymmetry 27, 960–972 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Bakó, E. Czinege, T. Bakó, M. Czugler, L. Tőke, Tetrahedron Asymmetry 10, 4539–4551 (1999)CrossRefGoogle Scholar
  23. 23.
    C. Bosso, Org. Mass Spectrom. 12, 493–499 (1977)CrossRefGoogle Scholar
  24. 24.
    M. Sanchez-Rosello, A.L.A. Puchlopek, A.J. Morgan, S.J. Miller, J. Org. Chem. 73, 1774–1782 (2008)CrossRefGoogle Scholar
  25. 25.
    Y. Yoneda, T. Kawada, T. Rosenau, P. Kosma, Carbohyd. Res. 340, 2428–2435 (2005)CrossRefGoogle Scholar
  26. 26.
    N. Michihat, Y. Kaneko, Y. Kasai, K. Tanigawa, T. Hirokane, S. Higasa, H. Yamada, J. Org. Chem. 78, 4319–4328 (2013)CrossRefGoogle Scholar
  27. 27.
    B. Arezzini, M. Ferrali, E. Ferrari, C. Frassineti, S. Lazzari, G. Marverti, F. Spagnolo, M. Saladini, Eur. J. Med. Chem. 43, 2549–2556 (2008)CrossRefGoogle Scholar
  28. 28.
    K. Adelhorst, F. Bjoerkling, S.V. Godtfredsen, O. Kirk, Synthesis 112–115 (1990)Google Scholar
  29. 29.
    T.E. Timmel, Can. J. Chem. 42, 1456–1472 (1964)CrossRefGoogle Scholar
  30. 30.
    P.M. Goncalves, S.M. Roberts, P.W.H. Wan, Tetrahedron 60, 927–932 (2004)CrossRefGoogle Scholar
  31. 31.
    K. Kurashima, M. Fujii, Y. Ida, H. Akita, Chem. Pharm. Bull. 52, 270–275 (2004)CrossRefGoogle Scholar
  32. 32.
    C.-W. Li, H.-J. Dong, C.-B. Cui, Molecules 2034–2060 (2015)Google Scholar
  33. 33.
    A. Russo, S. Meninno, C. Tedesco, A. Lattanzi, Eur. J. Org. Chem. 5096–5103 (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Research Centre for Natural Sciences, Institute of Organic ChemistryHungarian Academy of SciencesBudapestHungary

Personalised recommendations