Research on Chemical Intermediates

, Volume 44, Issue 3, pp 1569–1578 | Cite as

Facile synthesis of Pd-decorated ZnO nanoparticles for acetone sensors with enhanced performance

  • Yong-Hui Zhang
  • Chun-Yan Liu
  • Bei-Bei Jiu
  • Yong Liu
  • Fei-Long Gong


ZnO and Pd nanoparticles (NPs) with average diameter of 38 and 10 nm were prepared in advance through a chemical solution method. Pd-functionalized ZnO nanoparticles (Pd@ZnO) were simply synthesized by adding ethanol solution of Pd NPs into ZnO powder, and annealing in argon atmosphere at 500 °C for 1 h after grinding for 30 min. The morphology and structure of the materials were systemically analyzed using Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. A weak peak in the XRD pattern of Pd@ZnO belonging to the (111) plane of elemental Pd indicated successfully loading of Pd. EDS and TEM results further confirmed successfully coating of Pd NPs onto the surface of ZnO. Sensors using ZnO NPs decorated with Pd (1 wt%) on the surface of exhibited highly elevated sensitivity of 76 in comparing with the response of 36 when based on pure ZnO NPs. In addition, such modification also resulted in a decrease in the operating temperature from 370 to 340 °C for 100 ppm acetone vapor. The sensing mechanism of the sensor based on Pd@ZnO NPs is discussed. Addition of Pd NPs can play an important role in improving the performance of gas sensors, including high sensitivity, good selectivity, and short response/recovery times.


Zinc oxide Pd nanoparticles Sensors Acetone 



The authors are grateful for the financial support from the National Natural Science Foundation of China (NSFC 21301158), Outstanding Young Scholars Program of Henan Province (164100510011), Back bone Teacher Project (2014GGJS-081 and 2012XGGJS04), and Graduate’s Scientific Research Foundation of Zhengzhou University of Light Industry.


  1. 1.
    X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Nano Lett. 6, 2768–2772 (2006)CrossRefGoogle Scholar
  2. 2.
    Y.Z. Mao, S.Y. Ma, W.Q. Li, J. Luo, L. Cheng, D.J. Gengzang, X.L. Xu, Mater. Lett. 157, 151–154 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Madan, R. Chaujar, Superlattices Microstruct. 100, 401–408 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Cao, P. Hu, W. Pan, Y. Huang, D. Jia, Sens. Actuators B 134, 462–466 (2008)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, Q. Xiang, J. Xu, P. Xu, Q. Pan, F. Li, J. Mater. Chem. 19, 4701–4706 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Zhang, S. Wang, M. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, S. Wu, Cryst. Growth Des. 9, 3532–3537 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu, J. Phys. Chem. C 113, 3430–3435 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Thepnurat, T. Chairuangsri, N. Hongsith, P. Ruankham, S. Choopun, ACS Appl. Mater. Interfaces 7, 24177–24184 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Ma, A. Hui, J. Liu, Y. Bao, Mater. Lett. 158, 420–423 (2015)CrossRefGoogle Scholar
  10. 10.
    R. Zhang, W. Pang, Z.H. Feng, X.J. Chen, Y. Chen, Q. Zhang, H. Zhang, C.L. Sun, J.J. Yang, D.H. Zhang, Sens. Actuators B 238, 357–363 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Kaur, S. Kailasaganapathi, N. Ramgir, N. Datta, S. Kumar, A.K. Debnath, D.K. Aswal, S.K. Gupta, Appl. Surf. Sci. 394, 258–266 (2017)CrossRefGoogle Scholar
  12. 12.
    Y.H. Zhang, C.Y. Liu, F.L. Gong, B.B. Jiu, F. Li, Mater. Lett. 186, 7–11 (2017)CrossRefGoogle Scholar
  13. 13.
    F. Zhou, W.X. Jing, Q. Wu, W.Z. Gao, Z.D. Jiang, J.F. Shi, Q.B. Cui, Mater. Sci. Semicond. Process. 56, 137–144 (2016)CrossRefGoogle Scholar
  14. 14.
    N.G. Shimpi, S. Jain, N. Karmakar, A. Shah, D.C. Kothari, S. Mishra, Appl. Surf. Sci. 390, 17–24 (2016)CrossRefGoogle Scholar
  15. 15.
    Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448–11456 (2013)CrossRefGoogle Scholar
  16. 16.
    V. Chivukula, D. Ciplys, M. Shur, P. Dutta, Appl. Phys. Lett. 96, 233512 (2010)CrossRefGoogle Scholar
  17. 17.
    V.K. Gupta, R. Sadeghi, F. Karimi, Sens. Actuators B 186, 603–609 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Park, S. Kim, H. Kheel, S.K. Hyun, C. Jin, C. Lee, Mater. Res. Bull. 82, 130–135 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Chen, X. Jing, J. Wang, J. Liu, D. Song, L. Liu, Superlattices Microstruct. 63, 204–214 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Liang, W. Li, J. Liu, M. Hu, Mater. Lett. 184, 92–95 (2016)CrossRefGoogle Scholar
  21. 21.
    A.S.M. Iftekhar Uddin, D.-T. Phan, G.-S. Chung, Sens. Actuators B 207, 362–369 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, F. Li, ACS Appl. Mater. Interfaces 4, 3797–3804 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Hu, F. Gao, S. Sang, P. Li, X. Deng, W. Zhang, Y. Chen, K. Lian, J. Mater. Sci. 50, 1935–1942 (2015)CrossRefGoogle Scholar
  24. 24.
    A.A. Ismail, F.A. Harraz, M. Faisal, A.M. El-Toni, A. Al-Hajry, M.S. Al-Assiri, Superlattices Microstruct. 95, 128–139 (2016)CrossRefGoogle Scholar
  25. 25.
    K.-W. Lee, A.S.M.I. Uddin, D.-T. Phan, G.-S. Chung, Electron. Lett. 51, 572–574 (2015)CrossRefGoogle Scholar
  26. 26.
    Z.S. Hosseini, A. Mortezaali, A. Iraji zad, S. Fardindoost, J. Alloys Compd. 628, 222–229 (2015)CrossRefGoogle Scholar
  27. 27.
    K. Shingange, Z.P. Tshabalala, O.M. Ntwaeaborwa, D.E. Motaung, G.H. Mhlongo, J. Colloid Interface Sci. 479, 127–138 (2016)CrossRefGoogle Scholar
  28. 28.
    C.-M. Chang, M.-H. Hon, I.-C. Leu, ACS Appl. Mater. Interfaces 5, 135–143 (2013)CrossRefGoogle Scholar
  29. 29.
    F. Li, Y. Ding, P. Gao, X. Xin, Z.L. Wang, Angew. Chem. Int. Ed. 43, 5238–5242 (2004)CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, C. Liu, F. Gong, B. Jiu, F. Li, Mater. Lett. 186, 7–11 (2017)CrossRefGoogle Scholar
  31. 31.
    Y.-H. Zhang, M.-L. Zhang, Y.-C. Zhou, J.-H. Zhao, S.-M. Fang, F. Li, J. Mater. Chem. A 2, 13129–13135 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. Xiong, J. Chen, B. Wiley, Y. Xia, J. Am. Chem. Soc. 127, 7332–7333 (2005)CrossRefGoogle Scholar
  33. 33.
    I. Atake, K. Nishida, D. Li, T. Shishido, Y. Oumi, T. Sano, K. Takehira, J. Mol. Catal. A: Chem. 275, 130–138 (2007)CrossRefGoogle Scholar
  34. 34.
    F. Gong, Y. Gong, H. Liu, M. Zhang, Y. Zhang, F. Li, Sens. Actuators B 223, 384–391 (2016)CrossRefGoogle Scholar
  35. 35.
    R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, J. Alloys Compd. 721, 182–190 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Anantachaisilp, S.M. Smith, C. Ton-That, T. Osotchan, A.R. Moon, M.R. Phillips, J. Phys. Chem. C 118, 27150–27156 (2014)CrossRefGoogle Scholar
  37. 37.
    S.L. Patil, M.A. Chougule, S. Sen, V.B. Patil, Measurement 45, 243–249 (2012)CrossRefGoogle Scholar
  38. 38.
    Y.V. Kaneti, J. Yue, X. Jiang, A. Yu, J. Phys. Chem. C 117, 13153–13162 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Han, X. Liu, X. Xing, N. Chen, X. Xiao, S. Liu, Y. Wang, Sens. Actuators B 237, 423–430 (2016)CrossRefGoogle Scholar
  40. 40.
    L. Qiao, Y. Bing, Y. Wang, S. Yu, Z. Liang, Y. Zeng, Sens. Actuators B 241, 1121–1129 (2017)CrossRefGoogle Scholar
  41. 41.
    T. Chen, Q.J. Liu, Z.L. Zhou, Y.D. Wang, Nanotechnology 19, 1–5 (2008)Google Scholar
  42. 42.
    L.L. Xing, C.H. Ma, Z.H. Chen, Y.J. Chen, X.Y. Xue, Nanotechnology 22, 215501 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Materials and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations