Skip to main content
Log in

Photoluminescence and photocatalytic properties of Er3+-doped In2O3 thin films prepared by sol–gel: application to Rhodamine B degradation under solar light

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The effect of Er3+ doping (1%) on the structural, optical and photocatalytic properties of In2O3 thin films deposited on quartz substrates by spin coating was investigated. The In2O3:1% Er3+ films, annealed in the temperature range 800–1000 °C, were characterized by X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy, UV–Vis spectroscopy, ellipsometry and photoluminescence (PL). The films are polycrystalline with a cubic structure and the lattice parameter increases with the incorporation of Er3+ owing to its larger radius. The SEM images of the film show a granular morphology with large grains (~ 200 nm). The doped In2O3 film exhibits less transparency than In2O3 in the UV–visible region with band gaps of 3.42 and 3.60 eV, respectively. PL shows strong lines at 548 and 567 nm, assigned to Er3+ under direct excitation at 532 nm. The energy diagram of the junction In2O3:1% Er3+/Na2SO4 (0.1 M) solution plotted from physical and photoelectrochemical characterizations shows the feasibility of the films for Rhodamine B (RhB) degradation under solar light. The conduction band at 2.22 V deriving from the In3+:5s orbital is suitably positioned with respect to the O2/O ·2 level (~ 1.40 VSCE), leading to oxidation of 32% of 10 ppm RhB within 40 min of solar irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.N. Lau, N.B. Ibrahim, H. Baqiah, Appl. Surf. Sci. 345, 355–362 (2015)

    Article  CAS  Google Scholar 

  2. P. King, T.D. Veal, F. Fuchs, C.Y. Wang, D. Payne, A. Bourlange, H. Zhang, G.R. Bell, V. Cimalla, O. Ambacher, Phys. Rev. B 79, 205–211 (2009)

    Google Scholar 

  3. M.A. Majeed Khan, W. Khan, M. Ahamed, M. Alhoshan, Mater. Lett. 79, 119–121 (2012)

    Article  Google Scholar 

  4. Y.H. Shin, S.B. Kang, S. Lee, J.J. Kim, H.K. Kim, Org. Electron. 14, 926–935 (2013)

    Article  CAS  Google Scholar 

  5. C. Cantalini, W. Wlodarski, H.T. Sun, M.Z. Atashbar, M. Passacantando, A.R. Phani, S. Santucci, Thin Solid Films 350, 276–282 (1999)

    Article  CAS  Google Scholar 

  6. D.W. Sheel, J.M. Gaskell, Thin Solid Films 520, 1242–1245 (2011)

    Article  CAS  Google Scholar 

  7. A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, J. Phys. Chem. B 106, 1909–1912 (2002)

    Article  CAS  Google Scholar 

  8. P.T. Neuvonen, K. Sigvardt, S.R. Johannsen, J. Chevallier, B. Julsgaard, S.K. Ram, A.N. Larsen, Appl. Phys. Lett. 104, 102–106 (2014)

    Article  Google Scholar 

  9. S. Yerci, R. Li, S.O. Kucheyev, T.V. Buuren, S.N. Basu, L. Dal Negro, J. Appl. Phys. Lett. 95, 031107 (2009)

    Article  Google Scholar 

  10. T.O.L. Sunde, Ph.D. Thesis (SINTEF) Trondheim, Norway (2013)

  11. N.V. Gaponenko, A.V. Mudryi, O.V. Sergeev, V.E. Borisenko, E.A. Stepanova, A.S. Baran, A.I. Ratko, J.C. Pivin, J.F. McGilp, Phys Stat. Sol. A. 165, 131 (1998)

    Article  CAS  Google Scholar 

  12. A. Podhorodecki, R. Kudrawiec, J. Misiewicz, N.V. Gaponenko, D.A.B. Tsyrkunov, Opt. Mater. 28, 685–687 (2006)

    Article  CAS  Google Scholar 

  13. H.K. Kim, C.C. Li, G. Nykolak, P.C. Becker, J. Appl. Phys. 76(12), 8209 (1994)

    Article  CAS  Google Scholar 

  14. S. Boumaza, F. Kaouah, T. Berrama, M. Trari, Z. Bendjama, J. Clean. Prod. 54, 296–306 (2013)

    Article  Google Scholar 

  15. R. Outemzabet, M. Doulache, M. Trari, Appl. Phys. A 119, 589–596 (2015)

    Article  CAS  Google Scholar 

  16. Y.G. Choi, S.M. Yu, W.J. Chung, Chem. Phys. Lett. 461, 290–293 (2008)

    Article  CAS  Google Scholar 

  17. A. Ghosh, A. Mondal, A. Das, S. Chattopadhyay, K.K. Chattopadhyay, J. Alloys Compd. 695, 1260–1265 (2017)

  18. M.J. Buerger, X-ray Crystallography (Wiley, New York, 1960), p. 23

    Google Scholar 

  19. Q. Xiao, Y. Liu, L. Liu, R. Li, W. Luo, X. Chen, J. Phys. Chem. 114, 9314–9321 (2010)

    CAS  Google Scholar 

  20. S. Bucak, D. Rende, Colloid and Surface Chemistry: A Laboratory Guide for Exploration of the Nanoworld (CRC Press, New York, 2014)

    Google Scholar 

  21. Z. Yuan, X. Zhu, X. Wang, Thin Solid Films 519, 3254–3258 (2011)

    Article  CAS  Google Scholar 

  22. TSh Atabaev, M. Kurisu, K. Konishi, N.H. Hong, Am. J. Nanosci. Nanotechnol. 2(1), 13–16 (2014)

    Article  CAS  Google Scholar 

  23. Z. Pan, A. Ueda, S.K. Hark, S. Mu, J. Nanophotonics 6, 063508 (2012)

    Article  Google Scholar 

  24. B. Pipeleers, S.M. Hogg, A. Vantomme, Nucl. Instrum. Methods Phys. Res. B 206, 95–98 (2003)

    Article  CAS  Google Scholar 

  25. L.N. Lau, Appl. Surf. Sci. 345, 355–359 (2015)

    Article  CAS  Google Scholar 

  26. W. Chen, J.O. Bovin, A.G. Joly, S.P. Wang, F.H. Su, G.H. Li, J. Phys. Chem. B 108, 11927–11934 (2004)

    Article  CAS  Google Scholar 

  27. S.Y. Bae, C.W. Na, J.H. Kang, J. Park, J. Phys. Chem. B 109, 2526 (2005)

    Article  CAS  Google Scholar 

  28. S.J. Wen, G. Couturier, G. Campet, J. Portier, J. Claverie, Phys. Stat. Sol. 130, 407 (1992)

    Article  CAS  Google Scholar 

  29. G. Rekhila, Y. Bessekhouad, M. Trari, Int. J. Hydrog. Energy. 38, 6335–6343 (2013)

    Article  CAS  Google Scholar 

  30. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, M.G. Stepanyan, E.A. Khachaturyan, J.A. Turner, C. R. Chim. 9, 325–333 (2006)

    Article  CAS  Google Scholar 

  31. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shakh Nazaryan, G.M. Stephanyan, J.A. Turner, O. Khaselev, Russ. J. Electrochem. Soc. 38, 378–383 (2002)

    Article  Google Scholar 

  32. K. Dib, R. Brahimi, Y. Bessekhouad, N. Tayebi, M. Trari, Mater. Sci. Semicond. Process. 48, 52–59 (2016)

    Article  CAS  Google Scholar 

  33. H. Moualkia, G. Rekhila, M. Izerrouken, A. Mahdjoub, M. Trari, Mater. Sci. Semicond. Process. 21, 186–193 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Faculties of Physics and Chemistry (Algiers). Special thanks to Prof. Raşit Turan and Dr Selcuk Yerci in The Center for Solar Energy Research and Applications for their helpful discussions and technical assistance in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keriti, Y., Keffous, A., Dib, K. et al. Photoluminescence and photocatalytic properties of Er3+-doped In2O3 thin films prepared by sol–gel: application to Rhodamine B degradation under solar light. Res Chem Intermed 44, 1537–1550 (2018). https://doi.org/10.1007/s11164-017-3183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3183-1

Keywords

Navigation