Photoluminescence and photocatalytic properties of Er3+-doped In2O3 thin films prepared by sol–gel: application to Rhodamine B degradation under solar light

  • Y. Keriti
  • A. Keffous
  • K. Dib
  • S. Djellab
  • M. Trari
Article

Abstract

The effect of Er3+ doping (1%) on the structural, optical and photocatalytic properties of In2O3 thin films deposited on quartz substrates by spin coating was investigated. The In2O3:1% Er3+ films, annealed in the temperature range 800–1000 °C, were characterized by X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy, UV–Vis spectroscopy, ellipsometry and photoluminescence (PL). The films are polycrystalline with a cubic structure and the lattice parameter increases with the incorporation of Er3+ owing to its larger radius. The SEM images of the film show a granular morphology with large grains (~ 200 nm). The doped In2O3 film exhibits less transparency than In2O3 in the UV–visible region with band gaps of 3.42 and 3.60 eV, respectively. PL shows strong lines at 548 and 567 nm, assigned to Er3+ under direct excitation at 532 nm. The energy diagram of the junction In2O3:1% Er3+/Na2SO4 (0.1 M) solution plotted from physical and photoelectrochemical characterizations shows the feasibility of the films for Rhodamine B (RhB) degradation under solar light. The conduction band at 2.22 V deriving from the In3+:5s orbital is suitably positioned with respect to the O2/O2· level (~ 1.40 VSCE), leading to oxidation of 32% of 10 ppm RhB within 40 min of solar irradiation.

Keywords

In2O3 Sol–gel Rare earth Er3+ Photoluminescence Thin films Photocatalysis 

Notes

Acknowledgements

This work was financially supported by the Faculties of Physics and Chemistry (Algiers). Special thanks to Prof. Raşit Turan and Dr Selcuk Yerci in The Center for Solar Energy Research and Applications for their helpful discussions and technical assistance in this work.

References

  1. 1.
    L.N. Lau, N.B. Ibrahim, H. Baqiah, Appl. Surf. Sci. 345, 355–362 (2015)CrossRefGoogle Scholar
  2. 2.
    P. King, T.D. Veal, F. Fuchs, C.Y. Wang, D. Payne, A. Bourlange, H. Zhang, G.R. Bell, V. Cimalla, O. Ambacher, Phys. Rev. B 79, 205–211 (2009)Google Scholar
  3. 3.
    M.A. Majeed Khan, W. Khan, M. Ahamed, M. Alhoshan, Mater. Lett. 79, 119–121 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.H. Shin, S.B. Kang, S. Lee, J.J. Kim, H.K. Kim, Org. Electron. 14, 926–935 (2013)CrossRefGoogle Scholar
  5. 5.
    C. Cantalini, W. Wlodarski, H.T. Sun, M.Z. Atashbar, M. Passacantando, A.R. Phani, S. Santucci, Thin Solid Films 350, 276–282 (1999)CrossRefGoogle Scholar
  6. 6.
    D.W. Sheel, J.M. Gaskell, Thin Solid Films 520, 1242–1245 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, J. Phys. Chem. B 106, 1909–1912 (2002)CrossRefGoogle Scholar
  8. 8.
    P.T. Neuvonen, K. Sigvardt, S.R. Johannsen, J. Chevallier, B. Julsgaard, S.K. Ram, A.N. Larsen, Appl. Phys. Lett. 104, 102–106 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Yerci, R. Li, S.O. Kucheyev, T.V. Buuren, S.N. Basu, L. Dal Negro, J. Appl. Phys. Lett. 95, 031107 (2009)CrossRefGoogle Scholar
  10. 10.
    T.O.L. Sunde, Ph.D. Thesis (SINTEF) Trondheim, Norway (2013)Google Scholar
  11. 11.
    N.V. Gaponenko, A.V. Mudryi, O.V. Sergeev, V.E. Borisenko, E.A. Stepanova, A.S. Baran, A.I. Ratko, J.C. Pivin, J.F. McGilp, Phys Stat. Sol. A. 165, 131 (1998)CrossRefGoogle Scholar
  12. 12.
    A. Podhorodecki, R. Kudrawiec, J. Misiewicz, N.V. Gaponenko, D.A.B. Tsyrkunov, Opt. Mater. 28, 685–687 (2006)CrossRefGoogle Scholar
  13. 13.
    H.K. Kim, C.C. Li, G. Nykolak, P.C. Becker, J. Appl. Phys. 76(12), 8209 (1994)CrossRefGoogle Scholar
  14. 14.
    S. Boumaza, F. Kaouah, T. Berrama, M. Trari, Z. Bendjama, J. Clean. Prod. 54, 296–306 (2013)CrossRefGoogle Scholar
  15. 15.
    R. Outemzabet, M. Doulache, M. Trari, Appl. Phys. A 119, 589–596 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.G. Choi, S.M. Yu, W.J. Chung, Chem. Phys. Lett. 461, 290–293 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Ghosh, A. Mondal, A. Das, S. Chattopadhyay, K.K. Chattopadhyay, J. Alloys Compd. 695, 1260–1265 (2017)Google Scholar
  18. 18.
    M.J. Buerger, X-ray Crystallography (Wiley, New York, 1960), p. 23Google Scholar
  19. 19.
    Q. Xiao, Y. Liu, L. Liu, R. Li, W. Luo, X. Chen, J. Phys. Chem. 114, 9314–9321 (2010)Google Scholar
  20. 20.
    S. Bucak, D. Rende, Colloid and Surface Chemistry: A Laboratory Guide for Exploration of the Nanoworld (CRC Press, New York, 2014)Google Scholar
  21. 21.
    Z. Yuan, X. Zhu, X. Wang, Thin Solid Films 519, 3254–3258 (2011)CrossRefGoogle Scholar
  22. 22.
    TSh Atabaev, M. Kurisu, K. Konishi, N.H. Hong, Am. J. Nanosci. Nanotechnol. 2(1), 13–16 (2014)CrossRefGoogle Scholar
  23. 23.
    Z. Pan, A. Ueda, S.K. Hark, S. Mu, J. Nanophotonics 6, 063508 (2012)CrossRefGoogle Scholar
  24. 24.
    B. Pipeleers, S.M. Hogg, A. Vantomme, Nucl. Instrum. Methods Phys. Res. B 206, 95–98 (2003)CrossRefGoogle Scholar
  25. 25.
    L.N. Lau, Appl. Surf. Sci. 345, 355–359 (2015)CrossRefGoogle Scholar
  26. 26.
    W. Chen, J.O. Bovin, A.G. Joly, S.P. Wang, F.H. Su, G.H. Li, J. Phys. Chem. B 108, 11927–11934 (2004)CrossRefGoogle Scholar
  27. 27.
    S.Y. Bae, C.W. Na, J.H. Kang, J. Park, J. Phys. Chem. B 109, 2526 (2005)CrossRefGoogle Scholar
  28. 28.
    S.J. Wen, G. Couturier, G. Campet, J. Portier, J. Claverie, Phys. Stat. Sol. 130, 407 (1992)CrossRefGoogle Scholar
  29. 29.
    G. Rekhila, Y. Bessekhouad, M. Trari, Int. J. Hydrog. Energy. 38, 6335–6343 (2013)CrossRefGoogle Scholar
  30. 30.
    V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, M.G. Stepanyan, E.A. Khachaturyan, J.A. Turner, C. R. Chim. 9, 325–333 (2006)CrossRefGoogle Scholar
  31. 31.
    V.M. Aroutiounian, V.M. Arakelyan, G.E. Shakh Nazaryan, G.M. Stephanyan, J.A. Turner, O. Khaselev, Russ. J. Electrochem. Soc. 38, 378–383 (2002)CrossRefGoogle Scholar
  32. 32.
    K. Dib, R. Brahimi, Y. Bessekhouad, N. Tayebi, M. Trari, Mater. Sci. Semicond. Process. 48, 52–59 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Moualkia, G. Rekhila, M. Izerrouken, A. Mahdjoub, M. Trari, Mater. Sci. Semicond. Process. 21, 186–193 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Y. Keriti
    • 1
    • 4
  • A. Keffous
    • 2
    • 4
  • K. Dib
    • 3
    • 4
  • S. Djellab
    • 1
    • 4
  • M. Trari
    • 3
    • 4
  1. 1.Faculty of PhysicsUSTHBAlgiersAlgeria
  2. 2.Division Couches Minces Surfaces et InterfaceCentre de Recherche en Technologie des Semi-conducteurs pour l’EnergétiqueAlgiersAlgeria
  3. 3.Laboratory of Storage and Valorization of Renewable Energies, Faculty of ChemistryUSTHBAlgiersAlgeria
  4. 4.Laboratory of Laser Physics, Optical Spectroscopy and Optoelectronics (LAPLASO)Badji Mokhtar Annaba UniversityAnnabaAlgeria

Personalised recommendations