Research on Chemical Intermediates

, Volume 44, Issue 3, pp 1505–1521 | Cite as

Simultaneous photodegradation of acid orange 7 and removal of Pb2+ from polluted water using reusable clinoptilolite–TiO2 nanocomposite

  • Bahman Abdollahi
  • Alireza Shakeri
  • Soheil Aber
  • Mina Sharifi Bonab


The aim of this research was the simultaneous removal of heavy metal and dye pollutants from water by a clinoptilolite–TiO2 nanocomposite. The nanocomposite was prepared by the synthesis of TiO2 nanoparticles on clinoptilolite. The structure and morphology of the clinoptilolite–TiO2 nanocomposite were studied by XRD, SEM, EDS and FTIR. The TiO2 synthesis and loading on clinoptilolite were confirmed by EDS, XRD and FTIR analysis. The TiO2 particle size was estimated by SEM images and XRD analysis to be less than 80 nm. The photocatalytic performance of the nanocomposite was evaluated for acid orange 7 (AO7) photodegradation under UV light irradiation in the presence of Pb2+. The removal of Pb2+ ions was investigated at the same time and the effect of the initial solution pH, the effect of AO7 and Pb2+ concentration were examined. The results indicated that the nanocomposite can simultaneously remove 77% of metal and 85% of dye from wastewater containing 500 ppm Pb2+ and 40 ppm AO7. The removal of Pb2+ ions was investigated at the same time and the effect of the initial solution pH, the effect of AO7 and Pb2+ concentration were examined. The results indicated that the nanocomposite can be used for the simultaneous photodegradation of AO7 and the removal of Pb2+ from water several times without a noticeable reduction in their efficiency. Also, the presence of the dye molecules led to a 10% increase in the removal efficiency of Pb2+ compared to when just Pb2+ was present.


Clinoptilolite TiO2 Nanocomposite Photocatalyst Acid Orange 7 



The authors wish to thank the East Azerbaijan province Water and Wastewater Company, University of Tehran, and University of Tabriz for providing facilities.


  1. 1.
    L. Wang, N. Wang, L. Zhu, H. Yu, H. Tang, J. Hazard. Mater. 152, 1 (2008)CrossRefGoogle Scholar
  2. 2.
    S. Asad, M.A. Amoozegar, A.A. Pourbabaee, M.N. Sarbolouki, S.M.M. Dastgheib, Bioresour. Technol. 98, 11 (2007)CrossRefGoogle Scholar
  3. 3.
    N. Daneshvar, D. Salari, S. Aber, J. Hazard. Mater. 94(1), 49 (2002) CrossRefGoogle Scholar
  4. 4.
    R. Djellabi, M.F. Ghorab, T. Sehili, CLEAN–Soil, Air, Water. 45(6) (2017) Google Scholar
  5. 5.
    H. Kyung, J. Lee, W. Choi, Environ. Sci. Technol. 39, 7 (2005)CrossRefGoogle Scholar
  6. 6.
    T.G. Chuah, A. Jumasiah, I. Azni, S. Katayon, S.T. Choong, Desalination. 175(3), 305 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Su, X. Sun, X. Zhou, C. Dai, Y. Zhang, J. Environ. Sci. 36, 1 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Garcia-Segura, S. Dosta, J.M. Guilemany, E. Brillas, Appl. Catal. B Environ. 132, 142 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Padervand, M. Tasviri, M.R. Gholami, Chem. Pap. 65, 3 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Mustafa, B. Dilara, K. Nargis, A. Naeem, P. Shahida, Colloids Surf. A 205, 3 (2002)CrossRefGoogle Scholar
  11. 11.
    F. Mahdizadeh, S. Aber, A. Karimi, J. Taiwan Inst. Chem. Eng. 49, 212 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Khodadoust, A. Sheini, N. Armand, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 92, 91 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Nezamzadeh-Ejhieh, M. Bahrami, Desalin. Water Treat. 55, 4 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Karimi, F. Mahdizadeh, D. Salari, A. Niaei, Desalination 275, 1–3 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Verboekend, T.C. Keller, M. Milina, R. Hauert, J. Pérez-Ramírez, Chem. Mater. 25, 9 (2013)CrossRefGoogle Scholar
  16. 16.
    B. Yahyaei, S. Azizian, A. Mohammadzadeh, M. Pajohi-Alamoti, Chem. Eng. J. 247, 16 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Zamiri, B. Singh, I. Bdikin, A. Rebelo, M.S. Belsley, J.M.F. Ferreira, Solid State Commun. 195, 74 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Pure Appl. Chem. 87, 9–10 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Fadzil, S. Ibrahim, M.A.K.M. Hanafiah, Process Saf. Environ. Prot. 100, 1 (2016)CrossRefGoogle Scholar
  20. 20.
    M.A.K.M. Hanafiah, Z.M. Hussin, N.F.M. Ariff, W.S.W. Ngah, S.C. Ibrahim, Adv. Mater. Res. 970, 198 (2014)CrossRefGoogle Scholar
  21. 21.
    D. Tiwari, H.-U. Kim, S.-M. Lee, Sep. Purif. Technol. 57, 1 (2007)CrossRefGoogle Scholar
  22. 22.
    M. Muruganandham, N. Shobana, M. Swaminathan, J. Mol. Catal. A Chem. 246, 1–2 (2006)CrossRefGoogle Scholar
  23. 23.
    A. Nageswara Rao, B. Sivasankar, V. Sadasivam, J. Hazard. Mater. 166, 2–3 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Chakrabarti, B.K. Dutta, J. Hazard. Mater. 112, 3 (2004)CrossRefGoogle Scholar
  25. 25.
    D. Tang, G. Zhang, Ultrason. Sonochem. 37, 208 (2017)CrossRefGoogle Scholar
  26. 26.
    H. Gan, G. Zhang, H. Huang, J. Hazard. Mater. 250251, 131 (2013)CrossRefGoogle Scholar
  27. 27.
    Z. Wan, G. Zhang, X. Wu, S. Yin, Appl. Catal. B Environ. 207, 17 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Bahman Abdollahi
    • 1
  • Alireza Shakeri
    • 1
  • Soheil Aber
    • 2
  • Mina Sharifi Bonab
    • 2
  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.Research Laboratory of Environmental Protection Technology, Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations