Skip to main content
Log in

The role of RGO in TiO2–RGO composites for the transesterification of dimethyl carbonate with phenol to diphenyl carbonate

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

TiO2–RGO composites were prepared and used as efficient heterogeneous catalysts for the transesterification of dimethyl carbonate with phenol. Transmission electron microscopy images demonstrated that the RGO could remarkablely improve the dispersion of TiO2. X‐ray photoelectron spectroscopy showed that RGO could change the chemical states of Ti species. Py-IR and Py-TPD results indicated the addition of RGO led to the increase of medium Lewis acid sites of TiO2, which are positive for the transesterification reaction. The TiO2–RGO composite with 50 wt% RGO exhibited a remarkable catalytic performance for the transesterification of dimethyl carbonate with phenol to diphenyl carbonate. Under the optimized conditions, the 53.5% phenol conversion and 99.9% transesterification selectivity were achieved. This phonel conversion of 53.5% could be compared with the result of homogeneous catalysts. RGO has been an excellent structural and electronic promoter in TiO2–RGO composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Q. Wang, C. Li, M. Guo, S. Luo, C. Hu, Inorg. Chem. Front. 2(1), 47–54 (2015)

    Article  Google Scholar 

  2. Z.Q. Wang, X.G. Yang, S.Y. Liu, J. Hu, H. Zhang, G.Y. Wang, RSC Adv. 5(106), 87311–87319 (2015)

    Article  CAS  Google Scholar 

  3. S. Wang, R. Tang, Y. Zhang, T. Chen, G. Wang, Chem. Eng. Sci. 138, 93–98 (2015)

  4. G. Fan, S.-I. Fujita, B. Zou, M. Nishiura, X. Meng, M. Arai, Catal. Lett. 133(3–4), 280–287 (2009)

    Article  CAS  Google Scholar 

  5. K.M. Deshmukh, Z.S. Qureshi, K.P. Dhake, B.M. Bhanage, Catal. Commun. 12(3), 207–211 (2010)

    Article  CAS  Google Scholar 

  6. Q. Wang, M.M. Sun, M. Guo, S.J. Luo, C.H. Li, C.W. Hu, Integr. Ferroelectr. 164(1), 154–164 (2015)

    Article  CAS  Google Scholar 

  7. S.L. Wang, Y.Z. Zhang, T. Chen, G.Y. Wang, J. Mol. Catal. A: Chem. 398, 248–254 (2015)

    Article  CAS  Google Scholar 

  8. R.Z. Tang, T. Chen, Y. Chen, Y.Z. Zhang, G.Y. Wang, Chin. J. Catal. 35(4), 457–461 (2014)

    Article  CAS  Google Scholar 

  9. Y.T. Kim, E.D. Park, Appl. Catal. A Gen. 356(2), 211–215 (2009)

    Article  CAS  Google Scholar 

  10. D.S. Tong, T. Chen, J. Yao, Y. Wang, G.Y. Wang, D.C. Shi, Z. Li, Z.M. Chen, Chin. J. Catal. 28(3), 190–192 (2007)

    Article  CAS  Google Scholar 

  11. Y. Zhang, S. Wang, Z. Xiao, T. Chen, G. Wang, Res. Chem. Intermed. 42(9), 7213–7222 (2016)

    Article  CAS  Google Scholar 

  12. X. Zhou, X. Ge, R. Tang, T. Chen, G. Wang, Chin. J. Catal. 35(4), 481–489 (2014)

    Article  CAS  Google Scholar 

  13. H.Y. Niu, J. Yao, Y. Wang, G.Y. Wang, Catal. Commun. 8(3), 355–358 (2007)

    Article  CAS  Google Scholar 

  14. K. Xu, B. Feng, C. Zhou, A. Huang, Chem. Eng. Sci. 146, 159–165 (2016)

    Article  CAS  Google Scholar 

  15. W. Zhang, J. Chang, J. Chen, F. Xu, F. Wang, K. Jiang, Z. Gao, Res. Chem. Intermed. 38(9), 2443–2455 (2012)

    Article  CAS  Google Scholar 

  16. T.V.M. Sreekanth, M. Pandurangan, M.-J. Jung, Y.R. Lee, I.-Y. Eom, Res. Chem. Intermed. 42(6), 5665–5676 (2016)

    Article  CAS  Google Scholar 

  17. W. Chang, H. Kim, G.Y. Lee, B.J. Ahn, Res. Chem. Intermed. 42(1), 71–82 (2016)

    Article  CAS  Google Scholar 

  18. S. Kumar, P. Kumar, A. Deb, D. Maiti, S.L. Jain, Carbon 100, 632–640 (2016)

    Article  CAS  Google Scholar 

  19. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  20. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442(7100), 282–286 (2006)

    Article  CAS  Google Scholar 

  21. A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183–191 (2007)

    Article  CAS  Google Scholar 

  22. M.-R. Gao, X. Cao, Q. Gao, Y.-F. Xu, Y.-R. Zheng, J. Jiang, S.-H. Yu, ACS Nano 8(4), 3970–3978 (2014)

    Article  CAS  Google Scholar 

  23. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10(2), 577–583(2010)

    Article  CAS  Google Scholar 

  24. Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao, C. Xie, ACS Catal. 3(7), 1477–1475 (2013)

    Article  CAS  Google Scholar 

  25. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446(7131), 60–63 (2007)

    Article  CAS  Google Scholar 

  26. X.K. Zeng, Z.Y. Wang, N. Meng, D.T. McCarthy, A. Deletic, J.H. Pan, X.W. Zhang, Appl. Catal. B Environ. 202, 33–41 (2017)

    Article  CAS  Google Scholar 

  27. C. Park, T. Ghosh, Z. Meng, U. Kefayat, N. Vikram, W. Oh, Chin. J. Catal. 34(4), 711–717 (2013)

    Article  Google Scholar 

  28. T. Xian, H. Yang, L.J. Di, J.F. Dai, Res. Chem. Intermed. 41(1), 433–441 (2015)

    Article  CAS  Google Scholar 

  29. S. Abdolhosseinzadeh, H. Asgharzadeh, S. Sadighikia, A. Khataee, Res. Chem. Intermed. 42(5), 4479–4496 (2016)

    Article  CAS  Google Scholar 

  30. C. Ding, W. Wei, H. Sun, J. Ding, J. Ren, X. Qu, Carbon 79(0), 615–622 (2014)

    Article  CAS  Google Scholar 

  31. E. Antolini, Appl. Catal. B Environ. 123–124(0), 52–68 (2012)

    Article  Google Scholar 

  32. H.L. Poh, F. Šaněk, A. Ambrosi, G. Zhao, Z. Soferb, M. Pumera, Nanoscale 4, 3515–3522 (2012)

    Article  CAS  Google Scholar 

  33. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45(7), 1588–1565 (2007)

    Article  Google Scholar 

  34. D.-S. Tong, J. Yao, Y. Wang, H.-Y. Niu, G.-Y. Wang, J. Mol. Catal. A: Chem. 268(1–2), 120–126 (2007)

    Article  CAS  Google Scholar 

  35. S. Kumari, A. Shekhar, D.D. Pathak, RSC Adv. 6(19), 15340–15344 (2016)

    Article  CAS  Google Scholar 

  36. D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier, R. Dormoy, Surf. Sci. 254(1), 81–89 (1991)

    Article  CAS  Google Scholar 

  37. C.M. Chan, S. Trigwell, T. Duerig, Surf. Interface Anal. 15(6), 349–354 (1990)

    Article  CAS  Google Scholar 

  38. P. Coppens, Y. Chen, E. Trzop, Chem. Rev. 114(19), 9645–9661 (2014)

    Article  CAS  Google Scholar 

  39. Y.M. Liu, J.P. Wang, P. Yang, K. Matras-Postolek, RSC Adv. 5(76), 61657–61663 (2015)

    Article  CAS  Google Scholar 

  40. P. Shao, J. Tian, Z. Zhao, W. Shi, S. Gao, F. Cui, Appl. Surf. Sci. 324, 35–43 (2015)

    Article  CAS  Google Scholar 

  41. X. Zhang, H. Tian, X. Wang, G. Xue, Z. Tian, J. Zhang, S. Yuan, T. Yu, Z. Zou, Mater. Lett. 100, 51–53 (2013)

    Article  CAS  Google Scholar 

  42. Y. Zhao, W. Tan, H. Wu, A. Zhang, M. Liu, G. Li, X. Wang, C. Song, X. Guo, Catal. Today 160(1), 179–183 (2011)

    Article  CAS  Google Scholar 

  43. J.H. Park, C. Pang, C.H. Chung, J.W. Bae, J. Nanosci. Nanotechnol. 16(5), 4626–4630 (2016)

    Article  CAS  Google Scholar 

  44. C.A. Emeis, J. Catal. 141(2), 347–354 (1993)

    Article  CAS  Google Scholar 

  45. F. Blanco-Bonilla, S. Lopez-Pedrajas, D. Luna, J.M. Marinas, F.M. Bautista, J. Mol. Catal. A: Chem. 416, 105–116 (2016)

    Article  CAS  Google Scholar 

  46. X.S. Zhao, G.Q. Lu, A.K. Whittaker, G.J. Millar, H.Y. Zhu, J. Phys. Chem. B 101(33), 6525–6531 (1997)

    Article  CAS  Google Scholar 

  47. K. Hashimoto, T. Masuda, H. Sasaki, Ind. Eng. Chem. Res. 27(10), 1792–1797 (1988)

    Article  CAS  Google Scholar 

  48. H. Niu, H. Guo, H. Yao, Y. Wang, G. Wang, J. Mol. Catal. A: Chem. 259(1–2), 292–295 (2006)

    Article  CAS  Google Scholar 

  49. H.Y. Niu, J. Yao, Y. Wang, G.Y. Wang, J. Mol. Catal. A: Chem. 235(1–2), 240–243 (2005)

    Article  CAS  Google Scholar 

  50. Y. Gao, Z. Li, K. Su, B. Cheng, Chem. Eng. J. 301, 12–18 (2016)

  51. I. Jung, D.A. Field, N.J. Clark, Y.W. Zhu, D.X. Yang, R.D. Piner, S. Stankovich, D.A. Dikin, H. Geisler, C.A. Ventrice, R.S. Ruoff, J. Phys. Chem. C 113(43), 18480–18486 (2009)

    Article  CAS  Google Scholar 

  52. A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 102(23), 4477–4482 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work from the National High Technology Research and Development Program of China (863 program, No. 2013AA031703), the Science and Technology Support Program of Sichuan Province (No. 2013GZX0135) and the Science and Technology Innovation Program for Youth Team of Sichuan Province (No. 2013TD0010) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Xiao, Z., Qu, Y. et al. The role of RGO in TiO2–RGO composites for the transesterification of dimethyl carbonate with phenol to diphenyl carbonate. Res Chem Intermed 44, 799–812 (2018). https://doi.org/10.1007/s11164-017-3135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3135-9

Keywords

Navigation