Skip to main content
Log in

The role of pyruvic acid as starting material in some organic reactions in the presence of SBA-Pr-SO3H nanocatalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Pyruvic acid contains three different reactive positions: –COOH, ketone carbonyl and methyl groups. Correspondingly, pyruvic acid was applied as starting material in the modified Niementowski reaction and Aldol condensation using SBA-Pr-SO3H as an efficient nanocatalyst. Aldol condensation of pyruvic acid and oxindole provided a new oxindol-based carboxylic acid which was subsequently used in the Ugi four-component reaction. Moreover, through the modified Niementowski reaction of pyruvic acid, new derivatives of quiazoline were produced in the presence of SBA-Pr-SO3H. The obtained products are important due to their potentially biological active skeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3

Similar content being viewed by others

References

  1. D.L. Dreyer, R.C. Brenner, Phytochemistry 19, 935–939 (1980)

    Article  CAS  Google Scholar 

  2. A. Astulla, K. Zaima, Y. Matsuno, Y. Hirasawa, W. Ekasari, A. Widyawaruyanti, N.C. Zaini, H. Morita, J. Nat. Med. 62, 470–472 (2008)

    Article  CAS  Google Scholar 

  3. A.H. Amin, D.R. Mehta, Nature 184, 1317 (1959)

    Article  CAS  Google Scholar 

  4. S. Soni, S. Anandjiwala, G. Patel, M. Rajani, Indian J. Pharm. Sci. 70, 36–42 (2008)

    Article  CAS  Google Scholar 

  5. K. Nepali, M.S. Bande, S. Sapra, A. Garg, S. Kumar, P. Sharma, R. Goyal, N.K. Satti, O.P. Suri, K.L. Dhar, Med. Chem. Res. 21, 1271–1277 (2011)

    Article  Google Scholar 

  6. S. Rayees, N.K. Satti, R. Mehra, A. Nargotra, S. Rasool, A. Sharma, P.K. Sahu, V.K. Rajnikant, K. Gupta, G.Singh Nepali, Med. Chem. Res. 23, 4269–4279 (2014)

    Article  CAS  Google Scholar 

  7. M.V. Telezhenetskaya, A.L. D’yakonov, Chem. Nat. Compd. 27, 471–474 (1991)

    Article  Google Scholar 

  8. G. Mohammadi Ziarani, P. Gholamzadeh, N. Lashgari, P. Hajiabbasi, Arkivoc 1, 470–535 (2013)

    Google Scholar 

  9. A. Millemaggi, R.J.K. Taylor, Eur. J. Org. Chem. 2010, 4527–4547 (2010)

    Article  Google Scholar 

  10. J. Wu, X. Du, J. Ma, Y. Zhang, Q. Shi, L. Luo, B. Song, S. Yang, D. Hu, Green Chem. 16, 3210–3217 (2014)

    Article  CAS  Google Scholar 

  11. F.A. Cabrera-Rivera, C. Ortíz-Nava, P. Román-Bravo, M.A. Leyva, J. Escalante, Heterocycles 85, 2173 (2012)

    Article  CAS  Google Scholar 

  12. J. Zhang, D. Ren, Y. Ma, W. Wang, H. Wu, Tetrahedron 70, 5274–5282 (2014)

    Article  CAS  Google Scholar 

  13. L.-M. Wang, L. Hu, H.-J. Chen, Y.-Y. Sui, W. Shen, J. Fluorine Chem. 130, 406–409 (2009)

    Article  CAS  Google Scholar 

  14. H. Zhu, R.F. Yang, L.H. Yun, J. Li, Chin. Chem. Lett. 21, 35–38 (2010)

    Article  CAS  Google Scholar 

  15. M.-G.A. Shvekhgeimer, Chem. Heterocycl. Compd. 37, 385–443 (2001)

    Article  CAS  Google Scholar 

  16. T. Hisano, Org. Prep. Proc. Int. 5, 145–193 (1973)

    Article  CAS  Google Scholar 

  17. F. Li, Y. Feng, Q. Meng, W. Li, Z. Li, Q. Wang, F. Tao, Arkivoc 1, 40–50 (2007)

    Google Scholar 

  18. Y. Liu, L. Lu, Y.-J. Zhou, X.-S. Wang, Res. Chem. Intermed. 40, 2823–2835 (2014)

    Article  CAS  Google Scholar 

  19. R. Ghorbani-Vaghei, A. Shahriari, Y. Maghbooli, J. Mahmoudi, Res. Chem. Intermed. 43, 983–993 (2017)

    Article  CAS  Google Scholar 

  20. G. Mohammadi Ziarani, Z. Kazemi Asl, P. Gholamzadeh, A. Badiei, M. Afshar, Appl. Chem. Organometal (2017). doi:10.1002/aoc.3830

    Google Scholar 

  21. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  22. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)

    Article  CAS  Google Scholar 

  23. J. Mondal, T. Sen, A. Bhaumik, Dalton Trans. 41, 6173–6181 (2012)

    Article  CAS  Google Scholar 

  24. R. Tayebee, M.M. Amini, M. Ghadamgahi, M. Armaghan, J. Mol. Catal. A: Chem. 366, 266–274 (2013)

    Article  CAS  Google Scholar 

  25. G. Mohammadi Ziarani, A. Badiei, S. Mousavi, N. Lashgari, A. Shahbazi, Chin. J. Catal. 33, 1832–1839 (2012)

    Article  CAS  Google Scholar 

  26. G. Mohammadi Ziarani, N. Lashgari, A. Badiei, J. Mol. Catal. A: Chem. 397, 166–191 (2015)

    Article  CAS  Google Scholar 

  27. Q. Yang, S. Wang, P. Fan, L. Wang, Y. Di, K. Lin, F.-S. Xiao, Chem. Mater. 17, 5999–6003 (2005)

    Article  CAS  Google Scholar 

  28. P. Gholamzadeh, G. Mohammadi Ziarani, A. Badiei, A. Abolhassani Soorki, N. Lashgari, Res. Chem. Intermed. 39, 3925–3936 (2013)

    Article  CAS  Google Scholar 

  29. R. Chênevert, G. Mohammadi Ziarani, D. Caron, M. Dasser, Can. J. Chem. 77, 223–226 (1999)

    Article  Google Scholar 

  30. R. Chênevert, G. Mohammadi Ziarani, M.P. Morin, M. Dasser, Tetrahedron Asymmetry 10, 3117–3122 (1999)

    Article  Google Scholar 

  31. S.Y. Afsar, G. Mohammadi Ziarani, H. Mollabagher, P. Gholamzadeh, A. Badiei, A. Abolhasani Soorki, J. Iran. Chem. Soc. 14, 577–583 (2017)

    Article  CAS  Google Scholar 

  32. P. Gholamzadeh, G.M. Ziarani, A. Badiei, J. Chil. Chem. Soc. 61, 2935–2939 (2016)

    Article  CAS  Google Scholar 

  33. G. Mohammadi Ziarani, P. Gholamzadeh, A. Badiei, S. Asadi, A.A. Soorki, Chem. Soc. 60, 2975–2978 (2015)

    Google Scholar 

  34. P. Gholamzadeh, G. Mohammadi Ziarani, N. Lashgari, A. Badiei, A. Shayesteh, M. Jafari, J. Fluoresc. 26, 1857–1864 (2016)

    Article  CAS  Google Scholar 

  35. G. Mohammadi Ziarani, S. Ghorbi, P. Gholamzadeh, A. Badiei, Iran. J. Catal. 6, 229–235 (2016)

    Google Scholar 

  36. R.P. Staiger, C.L. Moyer, G.R. Pitcher, J. Chem. Eng. Data 8, 454–456 (1963)

    Article  CAS  Google Scholar 

  37. P.E. Zhichkin, L.H. Peterson, C.M. Beer, W.M. Rennells, J. Org. Chem. 73, 8954–8959 (2008)

    Article  CAS  Google Scholar 

  38. R.H. Clark, E. Wagner, J. Org. Chem. 9, 55–67 (1944)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge for the financial support from the Research Council of Alzahra University and the University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghodsi Mohammadi Ziarani or Parisa Gholamzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi Ziarani, G., Gholamzadeh, P., Badiei, A. et al. The role of pyruvic acid as starting material in some organic reactions in the presence of SBA-Pr-SO3H nanocatalyst. Res Chem Intermed 44, 277–288 (2018). https://doi.org/10.1007/s11164-017-3103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3103-4

Keywords

Navigation