Research on Chemical Intermediates

, Volume 43, Issue 9, pp 5137–5152 | Cite as

The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production

  • Guosheng Li
  • Jiale Shi
  • Guigang Zhang
  • Yuanxing Fang
  • Masakazu Anpo
  • Xinchen Wang


We report on the facile synthesis of g-C3N4 based polymers by co-condensing urea with glycine for photocatalytic hydrogen evolution. The as-prepared photocatalysts were then characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis diffuse reflectance spectroscopy, photoluminescence emission spectrometry, electron paramagnetic resonance spectrometry and transmission electron microscopy. Compared with pristine g-C3N4, obtained from direct pyrolysis of urea, the CNU-G5 photocatalyst showed largely enhanced photocatalytic H2 activities about 75 μmol h−1, which is 5 times higher than of the pristine CNU. The enhanced activities are ascribed to the larger specific area surface, strengthened optical absorption and improved electron transport ability. Our work opens up a new pathway for the synthesis graphitic carbon nitride photocatalysts with glycine modification to enhance photocatalytic activities.


Photocatalysis Graphitic carbon nitride Glycine Co-condensation Hydrogen production 



This work is financially supported by the National Basic Research Program of China (2013CB632405), the National Natural Science Foundation of China (21425309 and 21761132002) and the 111 Project.

Supplementary material

11164_2017_3041_MOESM1_ESM.docx (80 kb)
Supplementary material 1 (DOCX 80 kb)


  1. 1.
    Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 414, 625–627 (2001)CrossRefGoogle Scholar
  2. 2.
    M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446–6473 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440, 295 (2006)CrossRefGoogle Scholar
  4. 4.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503–6570 (2010)CrossRefGoogle Scholar
  5. 5.
    H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453, 638–641 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253–278 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269–271 (2001)CrossRefGoogle Scholar
  8. 8.
    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  9. 9.
    S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J.J. Pijpers, D.G. Nocera, Science 334, 645–648 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)CrossRefGoogle Scholar
  11. 11.
    K. Li, M. Han, R. Chen, S.-L. Li, S.-L. Xie, C. Mao, X. Bu, X.-L. Cao, L.-Z. Dong, P. Feng, Y.-Q. Lan, Adv. Mater. 28, 8906–8911 (2016)CrossRefGoogle Scholar
  12. 12.
    G. Zhang, Z.-A. Lan, X. Wang, Angew. Chem. Int. Ed. 55, 15712–15727 (2016)CrossRefGoogle Scholar
  13. 13.
    K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, J. Phys. Chem. C 113, 4940–4947 (2009)CrossRefGoogle Scholar
  14. 14.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir ACS J. Surf. Coll. 25, 10397–10401 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, X. Wang, M. Antonietti, Angew. Chem. 51, 68–89 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Zhang, M. Grzelczak, Y. Hou, K. Maeda, K. Domen, X. Fu, M. Antonietti, X. Wang, Chem. Sci. 3, 443–446 (2012)CrossRefGoogle Scholar
  17. 17.
    G. Zhang, Z.-A. Lan, L. Lin, S. Lin, X. Wang, Chem. Sci. 7, 3062–3066 (2016)CrossRefGoogle Scholar
  18. 18.
    Z. Pan, Y. Zheng, F. Guo, P. Niu, X. Wang, Chemsuschem 10, 87–90 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Hou, F. Zuo, A.P. Dagg, J. Liu, P. Feng, Adv. Mater. 26, 5043–5049 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27, 2150–2176 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Energy Environ. Sci. 5, 6717 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 54, 12868–12884 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, Y. Chen, X. Wang, Energy Environ. Sci. 8, 3092–3108 (2015)CrossRefGoogle Scholar
  24. 24.
    W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116, 7159–7329 (2016)CrossRefGoogle Scholar
  25. 25.
    X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2, 1596–1606 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 49, 441–444 (2010)CrossRefGoogle Scholar
  27. 27.
    G. Zhang, X. Wang, J. Catal. 307, 246–253 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Zhang, X. Wang, Energy Environ. Sci. 7, 1902–1906 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Hu, F. Li, Z. Fan, F. Wang, Y. Zhao, Z. Lv, Dalton Trans. 44, 1084–1092 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, G.Q. Lu, H.M. Cheng, J. Am. Chem. Soc. 132, 11642–11648 (2010)CrossRefGoogle Scholar
  31. 31.
    Z. Lin, X. Wang, Angew. Chem. Int. Ed. 52, 1735–1738 (2013)CrossRefGoogle Scholar
  32. 32.
    G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Adv. Mater. 26, 805–809 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Ran, T.Y. Ma, G. Gao, X.-W. Du, S.Z. Qiao, Energy Environ. Sci. 8, 3708–3717 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 55, 1830–1834 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc. 135, 7118–7121 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Shalom, S. Gimenez, F. Schipper, I. Herraiz-Cardona, J. Bisquert, M. Antonietti, Angew. Chem. 53, 3654–3658 (2014)CrossRefGoogle Scholar
  37. 37.
    Y.-S. Jun, E.Z. Lee, X. Wang, W.H. Hong, G.D. Stucky, A. Thomas, Adv. Funct. Mater. 23, 3661–3667 (2013)CrossRefGoogle Scholar
  38. 38.
    K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, J. Am. Chem. Soc. 136, 1730–1733 (2014)CrossRefGoogle Scholar
  39. 39.
    E. Wirnhier, M. Doblinger, D. Gunzelmann, J. Senker, B.V. Lotsch, W. Schnick, Chemistry 17, 3213–3221 (2011)CrossRefGoogle Scholar
  40. 40.
    L. Lin, H. Ou, Y. Zhang, X. Wang, ACS Catal. 6, 3921–3931 (2016)CrossRefGoogle Scholar
  41. 41.
    Z. Wu, H. Gao, S. Yan, Z. Zou, Dalton Trans. 43, 12013–12017 (2014)CrossRefGoogle Scholar
  42. 42.
    D. Chen, K. Wang, T. Ren, H. Ding, Y. Zhu, Dalton Trans. 43, 13105–13114 (2014)CrossRefGoogle Scholar
  43. 43.
    C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Adv. Funct. Mater. 22, 1518–1524 (2012)CrossRefGoogle Scholar
  44. 44.
    D. Jiang, L. Chen, J. Zhu, M. Chen, W. Shi, J. Xie, Dalton Trans. 42, 15726–15734 (2013)CrossRefGoogle Scholar
  45. 45.
    N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Dalton Trans. 44, 4297–4307 (2015)CrossRefGoogle Scholar
  46. 46.
    J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nat. Commun. 3, 1139 (2012)CrossRefGoogle Scholar
  47. 47.
    S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25, 2452–2456 (2013)CrossRefGoogle Scholar
  48. 48.
    Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 10, 2745–2751 (2016)CrossRefGoogle Scholar
  49. 49.
    G. Liu, T. Wang, H. Zhang, X. Meng, D. Hao, K. Chang, P. Li, T. Kako, J. Ye, Angew. Chem. 54, 13561–13565 (2015)CrossRefGoogle Scholar
  50. 50.
    H. Gao, S. Yan, J. Wang, Z. Zou, Dalton Trans. 43, 8178–8183 (2014)CrossRefGoogle Scholar
  51. 51.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18, 4893–4908 (2008)CrossRefGoogle Scholar
  52. 52.
    B.V. Lotsch, M. Doblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Chemistry 13, 4969–4980 (2007)CrossRefGoogle Scholar
  53. 53.
    J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, J. Mater. Chem. 21, 14398–14401 (2011)CrossRefGoogle Scholar
  54. 54.
    T. Livneh, T.L. Haslett, M. Moskovits, Phys. Rev. B 66, 195110 (2002)CrossRefGoogle Scholar
  55. 55.
    A.C. Ferrari, S.E. Rodil, J. Robertson, Phys. Rev. B 67, 155306 (2003)CrossRefGoogle Scholar
  56. 56.
    P.F. McMillan, V. Lees, E. Quirico, G. Montagnac, A. Sella, B. Reynard, P. Simon, E. Bailey, M. Deifallah, F. Corà, J. Solid State Chem. 182, 2670–2677 (2009)CrossRefGoogle Scholar
  57. 57.
    A.B. Jorge, D.J. Martin, M.T.S. Dhanoa, A.S. Rahman, N. Makwana, J. Tang, A. Sella, F. Corà, S. Firth, J.A. Darr, P.F. McMillan, J. Phys. Chem. C 117, 7178–7185 (2013)CrossRefGoogle Scholar
  58. 58.
    Y. Cui, J. Zhang, G. Zhang, J. Huang, P. Liu, M. Antonietti, X. Wang, J. Mater. Chem. 21, 13032 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Guosheng Li
    • 1
  • Jiale Shi
    • 1
  • Guigang Zhang
    • 1
  • Yuanxing Fang
    • 1
  • Masakazu Anpo
    • 1
  • Xinchen Wang
    • 1
  1. 1.State Key Laboratory of Photocatalysis on Energy and Environment, College of ChemistryFuzhou UniversityFuzhouChina

Personalised recommendations