Skip to main content
Log in

Preparation of tantalum oxynitride thin film photocatalysts by reactive magnetron sputtering deposition under high substrate temperature

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This work spotlights the formation behavior of visible light-responsive tantalum oxynitride (TaON) thin film photocatalysts under high substrate temperature in radiofrequency reactive magnetron sputtering deposition. The results emanating from the optimization of the sputtering conditions demonstrated that sputtered N atoms with high kinetic energy generated by controlling target–substrate distances and total pressures in the sputtering chamber were necessary to grow TaON phase even under N2-rich atmosphere. Based on these findings, TaON thin film photocatalysts were successfully synthesized by single-step sputtering under a high substrate temperature of 1073 K before heat treatment. The optimal thickness of TaON thin film photocatalysts was extrapolated to be 450 nm by photoelectrochemical measurements under visible light irradiation (λ > 450 nm), in which distinct photocurrents corresponding to water oxidation were observed. Moreover, the photoelectrochemical activity was able to be improved by postsynthetic heat treatment in gaseous NH3 and loading with IrO2 nanocolloids as cocatalysts. This finding would be because the thin film photocatalyst after heat treatment in NH3 under appropriate conditions possessed better crystallinity and moderate donor density. The optimized TaON thin film photocatalysts with IrO2 nanocolloids also exhibited photocatalytic activity for H2 evolution from aqueous medium containing methanol as a sacrificial electron donor under visible light irradiation (λ > 450 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  2. S. Sato, J.M. White, Chem. Phys. Lett. 72, 83 (1980)

    Article  CAS  Google Scholar 

  3. K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, H. Arakawa, Chem. Phys. Lett. 277, 387 (1997)

    Article  CAS  Google Scholar 

  4. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  CAS  Google Scholar 

  5. R. Abe, K. Sayama, K. Domen, H. Arakawa, Chem. Phys. Lett. 344, 339 (2001)

    Article  CAS  Google Scholar 

  6. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440, 295 (2006)

    Article  CAS  Google Scholar 

  7. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009)

    Article  CAS  Google Scholar 

  8. K. Maeda, K. Domen, J. Phys. Chem. Lett. 1, 2655 (2010)

    Article  CAS  Google Scholar 

  9. Y. Horiuchi, T. Toyao, M. Takeuchi, M. Matsuoka, M. Anpo, Phys. Chem. Chem. Phys. 15, 13243 (2013)

    Article  CAS  Google Scholar 

  10. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)

    Article  CAS  Google Scholar 

  11. D.E. Scaife, Sol. Energy 25, 41 (1980)

    Article  CAS  Google Scholar 

  12. A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Phys. Chem. A 106, 6750 (2002)

    Article  CAS  Google Scholar 

  13. D. Yamasita, T. Takata, M. Hara, J.N. Kondo, K. Domen, Solid State Ion. 172, 591 (2004)

    Article  CAS  Google Scholar 

  14. G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Chem. Commun. 1698 (2002)

  15. W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J.N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, J. Phys. Chem. B 107, 1798 (2003)

    Article  CAS  Google Scholar 

  16. R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 109, 8920 (2005)

    Article  CAS  Google Scholar 

  17. K. Maeda, K. Domen, J. Phys. Chem. C 111, 7851–7861 (2007)

    Article  CAS  Google Scholar 

  18. R. Abe, M. Higashi, K. Domen, J. Am. Chem. Soc. 132, 11828 (2010)

    Article  CAS  Google Scholar 

  19. M. Higashi, K. Domen, R. Abe, Energy Environ. Sci. 4, 4138 (2011)

    Article  CAS  Google Scholar 

  20. M. Higashi, K. Domen, R. Abe, J. Am. Chem. Soc. 134, 6968 (2012)

    Article  CAS  Google Scholar 

  21. M. de Respinis, M. Fravventura, F.F. Abdi, H. Schreuders, T.J. Savenije, W.A. Smith, B. Dam, R. van de Krol, Chem. Mater. 27, 7091 (2015)

    Article  Google Scholar 

  22. T.M. Suzuki, S. Saeki, K. Sekizawa, K. Kitazumi, N. Takahashi, T. Morikawa, Appl. Catal. B 202, 597 (2017)

    Article  CAS  Google Scholar 

  23. M. Wassner, M. Eckardt, C. Gebauer, G.R. Bourret, N. Hüsing, R.J. Behm, Electrochim. Acta 227, 367 (2017)

    Article  CAS  Google Scholar 

  24. M. Kitano, M. Takeuchi, M. Matsuoka, J.M. Thomas, M. Anpo, Catal. Today 120, 133 (2007)

    Article  CAS  Google Scholar 

  25. J.H. Hsieh, C.C. Chang, Y.K. Chang, J.S. Cherng, Thin Solid Films 518, 7263 (2010)

    Article  CAS  Google Scholar 

  26. K. Kato, H. Toyota, Y. Jin, T. Ono, Vacuum 83, 592 (2008)

    Article  CAS  Google Scholar 

  27. H. Le Dréo, O. Banakh, H. Keppner, P.A. Steinmann, D. Briand, N.F. de Rooij, Thin Solid Films 515, 952 (2006)

    Article  Google Scholar 

  28. D. Cristea, M. Pătru, A. Crisan, D. Munteanu, D. Crăciun, N.P. Barradas, E. Alves, M. Apreutesei, C. Moura, L. Cunha, Appl. Surf. Sci. 358, Part B, 508 (2015)

    Article  Google Scholar 

  29. C.-A. Jong, T.S. Chin, Mater. Chem. Phys. 74, 201 (2002)

    Article  CAS  Google Scholar 

  30. B. Angélique, Z. Fadi, C. Joël, T.-G. Christine, T. Sauvage, T. Eric, J. Phys. D Appl. Phys. 47, 475201 (2014)

    Article  Google Scholar 

  31. O. Banakh, P.A. Steinmann, L. Dumitrescu-Buforn, Thin Solid Films 513, 136 (2006)

    Article  CAS  Google Scholar 

  32. S. Pung Keun, S. Yuzo, K. Masayuki, Y. Itaru, Jpn. J. Appl. Phys. 38, 2921 (1999)

    Article  Google Scholar 

  33. G. Zhao, S. Utsumi, H. Kozuka, T. Yoko, J. Mater. Sci. 33, 3655 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (nos. 25410241, 15K17903, and 15K13820) and by the Global Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST), Korea (grant no. 2010-00339).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Horiuchi or Masaya Matsuoka.

Additional information

Special Issue of the 1st International Symposium on Photocatalysis at Fuzhou University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horiuchi, Y., Mine, S., Moriyasu, M. et al. Preparation of tantalum oxynitride thin film photocatalysts by reactive magnetron sputtering deposition under high substrate temperature. Res Chem Intermed 43, 5123–5136 (2017). https://doi.org/10.1007/s11164-017-3040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3040-2

Keywords

Navigation