Skip to main content

Advertisement

Log in

Photo-generated conduction-band and shallow-trap electrons from UV irradiation on ethanol-adsorbed TiO2 and N-TiO2: an in situ infrared study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The dynamic behaviors of conduction-band electrons (\({\text{e}}_{CB}^{ - }\)) and shallow-trap electrons (\({\text{e}}_{ST}^{ - }\)) generated from UV irradiation on ethanol-adsorbed TiO2 and N-TiO2 have been studied by in situ Fourier transform infrared spectroscopy (FTIR) in a diffuse reflectance mode at 300 K and 0.1 MPa. UV irradiation on ethanol-adsorbed TiO2 resulted in the breaking of C–H bond of ethanol, the transfer of electrons from ethanol to the photo-generated holes on TiO2 and N-TiO2, the accumulation of \({\text{e}}_{CB}^{ - }\) and \({\text{e}}_{ST}^{ - }\), and the formation of acetate on TiO2 and the formation of acetate, formate, and formaldehyde on N-TiO2. Accumulated \({\text{e}}_{CB}^{ - }\) and \({\text{e}}_{ST}^{ - }\) are manifested by broad and featureless IR absorbance spectra, which can be fitted into two models for estimation of their relative concentrations. N-doping onto TiO2 produced a higher population of \({\text{e}}_{ST}^{ - }\) and generated \({\text{e}}_{ST}^{ - }\) and \({\text{e}}_{CB}^{ - }\) at a lower rate than TiO2. The average energy level of \({\text{e}}_{ST}^{ - }\) was determined to be 0.30 eV for TiO2 and 0.26 eV for N-TiO2 below the conduction band. Upon terminating UV irradiation, the IR intensity of accumulated \({\text{e}}_{CB}^{ - }\) and \({\text{e}}_{ST}^{ - }\) showed a gradual decay in a time scale of minutes. This study demonstrated that the recombination of photo-generated electrons and holes can be a slow process on TiO2 and N-TiO2 in the presence of adsorbed ethanol under ambient conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014)

    Article  CAS  Google Scholar 

  2. M. Anpo, Photocatalysis on small particle TiO2 catalysts. reaction intermediates and reaction mechanisms. Res. Chem. Intermed. 11(1), 67 (1989)

    Article  CAS  Google Scholar 

  3. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)

    Article  CAS  Google Scholar 

  4. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)

    Article  CAS  Google Scholar 

  5. M. Anpo, Utilization of TiO2 photocatalysts in green chemistry. Pure Appl. Chem. 72, 1265 (2000)

  6. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52(10), 3581–3599 (2013)

    Article  CAS  Google Scholar 

  7. M. Yan, F. Chen, J. Zhang, M. Anpo, Preparation of controllable crystalline titania and study on the photocatalytic properties. J. Phys. Chem. B 109(18), 8673–8678 (2005)

    Article  CAS  Google Scholar 

  8. A. Yamakata, T. Ishibashi, H. Onishi, Kinetics of the photocatalytic water-splitting reaction on TiO2 and Pt/TiO2 studied by time-resolved infrared absorption spectroscopy. J. Mol. Catal. A Chem. 199(1–2), 85–94 (2003)

    Article  CAS  Google Scholar 

  9. F. Guzman, S.S.C. Chuang, Tracing the reaction steps involving oxygen and IR observable species in ethanol photocatalytic oxidation on TiO2. J. Am. Chem. Soc. 132(5), 1502–1503 (2010)

    Article  CAS  Google Scholar 

  10. F. Amano, M. Nakata, A. Yamamoto, T. Tanaka, Effect of Ti3+ ions and conduction band electrons on photocatalytic and photoelectrochemical activity of rutile titania for water oxidation. J. Phys. Chem. C 120(12), 6467–6474 (2016)

    Article  CAS  Google Scholar 

  11. T. Berger, M. Sterrer, O. Diwald, E. Knoezinger, D. Panayotov, T.L. Thompson, J.T. Yates Jr., Light-induced charge separation in anatase TiO2 particles. J. Phys. Chem. B 109(13), 6061–6068 (2005)

    Article  CAS  Google Scholar 

  12. A.K. Ghosh, F.G. Wakim, R.R. Addiss, Photoelectronic processes in rutile. Phys. Rev. 184(3), 979–988 (1969)

    Article  CAS  Google Scholar 

  13. D.A. Panayotov, S.P. Burrows, J.R. Morris, Infrared spectroscopic studies of conduction band and trapped electrons in UV-photoexcited, H-atom n-doped, and thermally reduced TiO2. J. Phys. Chem. C 116(7), 4535–4544 (2012)

    Article  CAS  Google Scholar 

  14. Z. Yu, S.S.C. Chuang, In situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO2. J. Catal. 246(1), 118–126 (2007)

    Article  CAS  Google Scholar 

  15. Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111(19), 6976–6982 (2007)

    Article  CAS  Google Scholar 

  16. A. Samokhvalov, Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew. Sustain. Energy Rev. 72, 981–1000 (2017)

    Article  CAS  Google Scholar 

  17. H. Zhao, Q. Zhang, Y.-X. Weng, Deep Surface trap filling by photoinduced carriers and interparticle electron transport observed in TiO2 nanocrystalline film with time-resolved visible and mid-IR transient spectroscopies. J. Phys. Chem. C 111(9), 3762–3769 (2007)

    Article  CAS  Google Scholar 

  18. T. Berger, J.A. Anta, V. Morales-Flórez, Electrons in the band gap: spectroscopic characterization of anatase TiO2 nanocrystal electrodes under fermi level control. J. Phys. Chem. C 116(21), 11444–11455 (2012)

    Article  CAS  Google Scholar 

  19. G. Boschloo, D. Fitzmaurice, Electron accumulation in nanostructured TiO2 (anatase) electrodes. J. Phys. Chem. B 103(37), 7860–7868 (1999)

    Article  CAS  Google Scholar 

  20. H. Lin, J. Long, Q. Gu, W. Zhang, R. Ruan, Z. Li, X. Wang, In situ IR study of surface hydroxyl species of dehydrated TiO2: towards understanding pivotal surface processes of TiO2 photocatalytic oxidation of toluene. Phys. Chem. Chem. Phys. 14(26), 9468–9474 (2012)

    Article  CAS  Google Scholar 

  21. M. Ghosh, M. Lohrasbi, S.S.C. Chuang, S.C. Jana, Mesoporous titanium dioxide nanofibers with a significantly enhanced photocatalytic activity. ChemCatChem 8(15), 2525–2535 (2016)

    Article  CAS  Google Scholar 

  22. A. Rismanchian, Y.-W. Chen, S.S.C. Chuang, In situ infrared study of photoreaction of ethanol on Au and Ag/TiO2. Catal. Today 264, 16–22 (2016)

    Article  CAS  Google Scholar 

  23. E. Pelizzetti, C. Minero, Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles. Electrochim. Acta 38(1), 47–55 (1993)

    Article  CAS  Google Scholar 

  24. G. Mattioli, F. Filippone, P. Alippi, A. Amore Bonapasta, Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO2. Phys. Rev. B 78(24), 241201 (2008)

    Article  Google Scholar 

  25. S.H. Szczepankiewicz, J.A. Moss, M.R. Hoffmann, Electron traps and the stark effect on hydroxylated titania photocatalysts. J. Phys. Chem. B 106(31), 7654–7658 (2002)

    Article  CAS  Google Scholar 

  26. D.M. Savory, A.J. McQuillan, IR spectroscopic behavior of polaronic trapped electrons in TiO2 under aqueous photocatalytic conditions. J. Phys. Chem. C 118(25), 13680–13692 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Akron Polymer Science Faculty Initiation Fund. The authors thank Ms. Jie Yu and Mr. P. Patanapaniswa for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. C. Chuang.

Additional information

Special Issue of the 1st International Symposium on Photocatalysis at Fuzhou University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, L., Yao, X. et al. Photo-generated conduction-band and shallow-trap electrons from UV irradiation on ethanol-adsorbed TiO2 and N-TiO2: an in situ infrared study. Res Chem Intermed 43, 5041–5054 (2017). https://doi.org/10.1007/s11164-017-3038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3038-9

Keywords

Navigation