Skip to main content

Chemical modification of activated carbon surface with iron functional groups for efficient separation of vanadium: batch and column study

Abstract

In this study, iron functional groups-impregnated activated carbon (IIAC) composite was prepared as a novel adsorbent for vanadium separation. Adsorption experiments were performed in batch and column systems, and the effects of various operating parameters, such as solution pH, initial concentration, contact time, and temperature, were evaluated. The kinetic data confirmed the validity of the pseudo-second-order kinetic model for vanadium adsorption on IIAC. The sorption equilibrium data were analyzed using Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models. The results showed that IIAC has a vanadium ions adsorption capacity of 313 mg g−1. The activation and thermodynamic parameters were determined using kinetics and equilibrium data. The experimental data of the column adsorption process were fitted by Thomas and BDST models. The results showed that Thomas model can well describe the breakthrough curves. The column experiments showed that IIAC composite has good adsorption performance for vanadium ions adsorption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. H. Wyers, Brit. J. Ind. Med. 3, 177–182 (1946)

    CAS  Google Scholar 

  2. B. Patel, G.E. Henderson, S.J. Haswell, R. Grzeskowiak, The Analyst 115, 1063–1066 (1990)

    CAS  Article  Google Scholar 

  3. A.P. Rodríguez, J.A.H. Viezcas, J.R.P. Videa, G.L.G. Torresdey, O.P. Pérez, F.R.R. Velázquez, Microchem. J. 118, 1–11 (2015)

    Article  Google Scholar 

  4. A. Dabrowski, Z. Hubicki, P. Podkoscielny, E. Robens, Chemosphere 56, 91–106 (2004)

    CAS  Article  Google Scholar 

  5. A. Alibrahim, H. Shlewit, S. Alike, Chem. Eng. J. 52(1), 29–33 (2008)

    Google Scholar 

  6. M. Nabavinia, M. Soleimani, A. Kargari, Int. J. Chem. Environ. Eng. 3, 149–152 (2012)

    CAS  Google Scholar 

  7. R. Navarro, J. Guzman, I. Saucedo, J. Revilla, E. Guibal, Waste Manag. 27, 425–438 (2007)

    CAS  Article  Google Scholar 

  8. N. Mehrabi, M. Soleimani, M.M. Yeganeh, H. Sharififard, RSC Adv. 5, 51470–51482 (2015)

    CAS  Article  Google Scholar 

  9. R. Chand-Bansal, M. Goyal, Activated Carbon Adsorption (Taylor & Francis, Boca Raton, 2005)

    Book  Google Scholar 

  10. H. Marsh, F. Rodriguez-Reinoso, Activated Carbon (Elsevier, New York, 2006)

    Google Scholar 

  11. A.M. Cooper, K.D. Hristovski, T. Möller, P. Westerhoff, P. Sylvester, J. Hazard. Mater. 183, 381–388 (2010)

    CAS  Article  Google Scholar 

  12. J.A. Arcibar-Orozco, J.R. Rangel-Mendez, T.J. Bandosz, J. Hazard. Mater. 246–247, 300–309 (2013)

    Article  Google Scholar 

  13. J.H. Xu, N. Gao, Y. Deng, S. Xia, Chem. Eng. J. 222, 520–526 (2013)

    CAS  Article  Google Scholar 

  14. H. Sharififard, M. Soleimani, RSC Adv. 5, 80650–80660 (2015)

    CAS  Article  Google Scholar 

  15. H. Sharififard, M. Soleimani, Res. Chem. Intermed. 43, 2501–2516 (2017)

    CAS  Article  Google Scholar 

  16. H. Sharififard, F. Zokaee Ashtiani, M. Soleimani, Asia Pac. J. Chem. Eng. 8, 384–395 (2013)

    CAS  Article  Google Scholar 

  17. P. Cambier, Clay Miner. 21, 191–200 (1986)

    CAS  Article  Google Scholar 

  18. Z. Al-Qodah, R. Shawabkah, Braz. J. Chem. Eng. 26, 127–136 (2009)

    CAS  Article  Google Scholar 

  19. Y. Li, C. Zhu, T. Lu, Z. Guo, D. Zhang, J. Ma, S. Zhu, Carbon 52, 565–573 (2013)

    Article  Google Scholar 

  20. T.S. Anirudhan, P.G. Radhakrishnan, Chem. Eng. J. 165, 142–150 (2010)

    CAS  Article  Google Scholar 

  21. T. Wang, Z. Cheng, B. Wang, W. Ma, Chem. Eng. J. 181–182, 182–188 (2012)

    Article  Google Scholar 

  22. B.H. Hameed, A.A. Ahmad, J. Hazard. Mater. 164, 870–875 (2009)

    CAS  Article  Google Scholar 

  23. M.C. Ncibi, J. Hazard. Mater. 153, 207–212 (2008)

    CAS  Article  Google Scholar 

  24. K. Riahi, S. Chaabane, B.B. Thayer, J. Saudi Chem. Soc. 21, 143–152 (2017)

    Article  Google Scholar 

  25. V.J. Inglezakis, A.A. Zorpas, Desalin. Water Treat. 39, 149–157 (2012)

    CAS  Article  Google Scholar 

  26. C. Namasivayam, D. Sangeetha, Adsorption 12, 103–117 (2006)

    CAS  Article  Google Scholar 

  27. J. Guzman, I. Saucedo, R. Navarro, J. Revilla, E. Guibal, Langmuir 18, 1567–1573 (2002)

    CAS  Article  Google Scholar 

  28. M. Jansson-Charrier, E. Guibal, J. Roussy, B. Delanghe, P. Le Cloirec, Water Res. 30, 465–475 (2002)

    Article  Google Scholar 

  29. T.S. Anirudhan, S. Jalajamony, L. Divya, Ind. Eng. Chem. Res. 48, 2118–2124 (2009)

    CAS  Article  Google Scholar 

  30. X.P. Liao, W. Tang, R.Q. Zhou, B. Shi, Adsorption 14, 55–64 (2008)

    CAS  Article  Google Scholar 

  31. T. Leiviskä, A. Keränen, N. Vainionpää, J. Al Amir, O. Hormi, J. Tanskanen, Water Sci. Technol. 72, 437–442 (2015)

    Article  Google Scholar 

  32. A. Naeem, P. Westerhoff, S. Mustafa, Water Res. 41, 1596–1602 (2007)

    CAS  Article  Google Scholar 

  33. M. Govindaraj, S. Pattabhi, Desalin. Water Treat. 54, 2664–2674 (2015)

    Article  Google Scholar 

  34. A. Bhatnagar, A.K. Minocha, D. Pudasainee, H.K. Chung, S.H. Kim, H.S. Kim, G. Lee, B. Min, B.H. Jeon, Chem. Eng. J. 144, 197–204 (2008)

    CAS  Article  Google Scholar 

  35. D.M. Manohar, B.F. Noeline, T.S. Anirudhan, Ind. Eng. Chem. Res. 44, 6676–6684 (2005)

    CAS  Article  Google Scholar 

  36. C. Pennesi, C. Totti, F. Beolchini, PLoS ONE 8(10), e76870 (2013)

    CAS  Article  Google Scholar 

  37. A. Keränen, T. Leiviskä, A. Salakka, J. Tanskanen, Desalin. Water Treat. 53, 2645–2654 (2015)

    Article  Google Scholar 

  38. Y. Shi, J. Yang, W. Mao, Y. Li, X. Xu, H. Zhang, W. Yu, Y. Li, C. Yang, Desalin. Water Treat. 53, 2655–2663 (2015)

    CAS  Article  Google Scholar 

  39. R.G. Kunz, J.F. Giannelli, H.D. Stensel, J. Water Pollut. Control Feder. 48, 762–770 (1976)

    CAS  Google Scholar 

  40. M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, J. Nat. Gas Sci. Eng. 27, 831–841 (2015)

    CAS  Article  Google Scholar 

  41. R. Han, Y. Wang, W. Yu, W. Zou, J. Shi, H. Lui, J. Hazard. Mater. 139, 513–518 (2006)

    Google Scholar 

  42. M. Ghasemi, A.R. Keshtkar, R. Dabbagh, S. Jaber Safdari, J. Hazard. Mater. 189(1–2), 141–149 (2011)

    CAS  Article  Google Scholar 

  43. Z. Xu, J.G. Cai, B.C. Pan, J. Zhejiang Univ. Sci. A 14, 155–176 (2013)

    CAS  Article  Google Scholar 

  44. G.S. Bohart, E.Q. Adams, J. Chem. Soc. 42, 523–529 (1920)

    CAS  Article  Google Scholar 

  45. A.B. Albadarin, C. Mangwandi, A.H. Al-Muhtaseb, G.M. Walker, S.J. Allen, M.N.M. Ahmad, Chin. J. Chem. Eng. 20(3), 469–477 (2012)

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the Ministry for Foreign Affairs and International Cooperation of Italy for Financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakimeh Sharififard.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharififard, H., Pepe, F., Aprea, P. et al. Chemical modification of activated carbon surface with iron functional groups for efficient separation of vanadium: batch and column study. Res Chem Intermed 43, 6553–6570 (2017). https://doi.org/10.1007/s11164-017-3004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3004-6

Keywords

  • Adsorption
  • Activated carbon
  • Impregnation
  • Iron functional groups
  • Vanadium