Skip to main content
Log in

Preparation of ultrafine Cu1.5Mn1.5O4 spinel nanoparticles and its application in p-nitrophenol reduction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, ultrafine Cu1.5Mn1.5O4 spinel nanoparticles were successfully synthesized by a sol–gel method combined with two complexing agents, which was firstly employed in the reductive transformation from p-nitrophenol into p-aminophenol. The effect of calcination temperature on the crystal phase and microstructure of Cu1.5Mn1.5O4 nanoparticles was investigated in this article. It was found that Cu1.5Mn1.5O4 nanoparticles with pure spinel phase can be obtained at 500 °C with the help of EDTA acid–citric acid complexing agents. Below 500 °C, there exists some Mn2O3 impure phase. SEM characterization indicated that the particle size of the spinel Cu1.5Mn1.5O4 rapidly increases above 600 °C. The catalytic experimental results show that the Cu1.5Mn1.5O4 nanoparticles prepared at 500 °C exhibit the highest catalytic activity which is even superior to some precious metal catalysts. With the calcination temperature increasing, the catalytic activity of Cu1.5Mn1.5O4 spinel nanoparticles gradually degrades which can be ascribed to the particle size growth of Cu1.5Mn1.5O4. It can also be observed that all the oxide samples, namely CuO, Mn2O3 and Cu1.5Mn1.5O4, possess certain catalytic ability for the transformation from p-nitrophenol into p-aminophenol. However, the catalytic activity of Cu1.5Mn1.5O4 spinel nanoparticles is obviously higher than CuO and Mn2O3. Especially, Mn2O3 alone has very poor catalytic activity in the reduction of p-nitrophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Ma, X. Wu, G. Zhang, Appl. Catal. B 205, 262–270 (2017)

    Article  CAS  Google Scholar 

  2. Z. Hasan, Y.S. Ok, J. Rinklebe, Y.F. Tsang, D.-W. Cho, H. Song, J. Alloys Compd. 703, 118–124 (2017)

    Article  CAS  Google Scholar 

  3. M. Maham, M. Nasrollahzadeh, S.M. Sajadi, M. Nekoei, J. Colloid Interface Sci. 497, 33–42 (2017)

    Article  CAS  Google Scholar 

  4. K. Zhang, Y. Liu, J. Deng, S. Xie, H. Lin, X. Zhao, J. Yang, Z. Han, H. Dai, Appl. Catal. B 202, 569–579 (2017)

    Article  CAS  Google Scholar 

  5. Y. Qiu, J. Zhou, J. Cai, W. Xu, Z. You, C. Yin, Chem. Eng. J. 306, 667–675 (2017)

    Article  Google Scholar 

  6. M. Dinesh, S.M. Roopan, C.I. Selvaraj, J. Photochem. Photobiol. B 161, 273–278 (2016)

    Article  CAS  Google Scholar 

  7. O.A. Zelekew, D.-H. Kuo, Appl. Surf. Sci. 393, 110–118 (2017)

    Article  CAS  Google Scholar 

  8. M. Farrag, Microporous Mesoporous Mater. 232, 248–255 (2016)

    Article  CAS  Google Scholar 

  9. L. Liu, R. Chen, W. Liu, J. Wu, D. Gao, J. Hazard. Mater. 320, 96–104 (2016)

    Article  CAS  Google Scholar 

  10. Z.J. Zhang, S.S. Sun, J. Electroanal. Chem. 778, 80–86 (2016)

    Article  CAS  Google Scholar 

  11. J. Wang, B. Jin, L. Cheng, Electrochim. Acta 91, 152–157 (2013)

    Article  CAS  Google Scholar 

  12. Z. Wu, J. Chen, Q. Di, M. Zhang, Catal. Commun. 18, 55–59 (2012)

    Article  Google Scholar 

  13. Q. Liu, Y.-R. Xu, A.-J. Wang, J.-J. Feng, RSC Adv. 5, 96028–96033 (2015)

    Article  CAS  Google Scholar 

  14. Y. Du, H. Chen, R. Chen, N. Xu, Appl. Catal. A 277, 259–264 (2004)

    Article  CAS  Google Scholar 

  15. S. Pandey, S.B. Mishra, Carbohydr. Polym. 113, 525–531 (2014)

    Article  CAS  Google Scholar 

  16. W.-Y. Ahn, S.A. Sheeley, T. Rajh, D.M. Cropek, Appl. Catal. B 74, 103–110 (2017)

    Article  Google Scholar 

  17. S. Bhar, R. Ananthakrishnan, RSC Adv. 5, 20704–20711 (2015)

    Article  CAS  Google Scholar 

  18. A. Serra, X. Alcobe, J. Sort, J. Nogues, E. Valles, J. Mater. Chem. A 4, 15676–15687 (2016)

    Article  CAS  Google Scholar 

  19. F. Taghavi, C. Falamaki, A. Shabanov, L. Bayrami, A. Roumianfar, Appl. Catal. A 407, 173–180 (2011)

    Article  CAS  Google Scholar 

  20. F.-H. Lin, R.-A. Doong, J. Phys. Chem. C 115, 6591–6598 (2011)

    Article  CAS  Google Scholar 

  21. C. Huang, W. Ye, Q. Liu, X. Qiu, A.C.S. Appl, Mater. Interfaces 6, 14469–14476 (2014)

    Article  CAS  Google Scholar 

  22. K. Layek, M.L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki, H. Maheswaran, Green Chem. 14, 3164–3174 (2012)

    Article  CAS  Google Scholar 

  23. Y.-Y. Shen, Y. Sun, L.-N. Zhou, Y.-J. Li, E.S. Yeung, J. Mater. Chem. A 2, 2977–2984 (2014)

    Article  CAS  Google Scholar 

  24. Y. Wu, C. Li, K. Zhou, Y. Zhao, X. Wang, CrystEngComm 18, 6513–6519 (2016)

    Article  CAS  Google Scholar 

  25. K. Zhao, J. Qi, S. Zhao, H. Tang, H. Yin, L. Zong, L. Chang, Y. Gao, R. Yu, Z. Tang, Chin. J. Catal. 36, 261–267 (2015)

    Article  CAS  Google Scholar 

  26. S.-D. Oh, M.-R. Kim, S.-H. Choi, J.-H. Chun, K.-P. Lee, A. Gopalan, C.-G. Hwang, K. Sang-Ho, O.J. Hoon, J. Ind. Eng. Chem. 14, 687–692 (2008)

    Article  CAS  Google Scholar 

  27. J.-R. Chiou, B.-H. Lai, K.-C. Hsu, D.-H. Chen, J. Hazard. Mater. 248–249, 394–400 (2013)

    Article  Google Scholar 

  28. S.T. Tan, A. Ali Umar, M.M. Salleh, J. Alloys Compd. 650, 299–304 (2015)

    Article  CAS  Google Scholar 

  29. M. Nasrollahzadeh, M. Maham, S. Mohammad Sajadi, J. Colloid Interface Sci. 455, 245–253 (2015)

    Article  CAS  Google Scholar 

  30. A. Goyal, S. Bansal, S. Singhal, Inter. J. Hydrog. Energ. 39, 4895–4908 (2014)

    Article  CAS  Google Scholar 

  31. T. Valdés-Solís, I. López, G. Marbán, Inter. J. Hydrog. Energ. 35, 1879–1887 (2010)

    Article  Google Scholar 

  32. T. Tabakova, V. Idakiev, G. Avgouropoulos, J. Papavasiliou, M. Manzoli, F. Boccuzzi, T. Ioannides, Appl. Catal. A 451, 184–191 (2013)

    Article  CAS  Google Scholar 

  33. J. Papavasiliou, G. Avgouropoulos, T. Ioannides, J. Catal. 251, 7–20 (2007)

    Article  CAS  Google Scholar 

  34. K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, K. Eguch, Appl. Catal. A 341, 139–145 (2009)

    Article  Google Scholar 

  35. W. Li, Z. Liu, R. Liu, J. Chen, B. Xu, Phys. Chem. Chem. Phys. 18, 22794–22798 (2016)

    Article  CAS  Google Scholar 

  36. P. Ma, Q. Geng, X. Gao, S. Yang, G. Liu, J. Alloys Compd. 675, 423–432 (2017)

    Article  Google Scholar 

  37. P. Ma, Q. Geng, X. Gao, S. Yang, G. Liu, RSC Adv. 6, 32947–32955 (2016)

    Article  CAS  Google Scholar 

  38. J. Quan, L. Mei, Z. Ma, J. Huang, D. Li, RSC Adv. 6, 55786–55791 (2016)

    Article  CAS  Google Scholar 

  39. X. Shi, F. Zheng, N. Yan, Q. Chen, Dalton Trans. 43, 13865–13873 (2014)

    Article  CAS  Google Scholar 

  40. M.H. Rashid, T.K. Mandal, J. Phys. Chem. C 111, 16750–16760 (2007)

    Article  CAS  Google Scholar 

  41. Z. Jin, M. Xiao, Z. Bao, P. Wang, J. Wang, Angew. Chem. Int. Ed. 51, 6406–6410 (2012)

    Article  CAS  Google Scholar 

  42. M.H. Rashid, R.R. Bhattacharjee, A. Kotal, T.K. Mandal, Langmuir 22, 7141–7143 (2006)

    Article  CAS  Google Scholar 

  43. X. Lu, X. Bian, G. Nie, C. Zhang, C. Wang, Y. Wei, J. Mater. Chem. 22, 12723–12730 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation (21201096) and the education department of Liaoning Province, China (L2010242, LZ2015050). The authors are also grateful for the financial supports from the National Natural Science Foundation of China (No. 21103077), program for New Century Excellent Talents in University (No. NCET-11-1011) and the support from Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhang, R., Li, Q. et al. Preparation of ultrafine Cu1.5Mn1.5O4 spinel nanoparticles and its application in p-nitrophenol reduction. Res Chem Intermed 43, 6505–6519 (2017). https://doi.org/10.1007/s11164-017-3001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3001-9

Keywords

Navigation