Abstract
Water pollution is one of the major concerns over long-term sustainability of the environment. Effective and efficient treatment of polluted wastewater is still a serious challenge for global researchers. In the last 2–3 decades, due to the incessant emergence of micropollutants in surface and ground water bodies, several endeavors have been made to resolve the water pollution issues either through chemical, physical and biological degradation processes or through removal/separation processes using different adsorbents and membranes. It has been found that most of the studies are mainly limited to single or binary pollutant analysis in a pure water matrix. Therefore, in this novel investigation, a mixture of five different pollutants has been studied for UV/TiO2-based photocatalytic degradation. In the present study, a commercially available TiO2, an antibiotic, i.e. Ciprofloxacin and four different synthetic dyes, i.e. Rhodamine B, Methylene Blue, Methyl Orange and Amaranth have been used as a photocatalyst, a pharmaceutical and various industrial dyes, respectively, in a batch photocatalytic reactor system with a stirrer. It is important to note that the commercial TiO2 photocatalyst has also been characterized with the help of several characterization techniques. The present study is mainly focused on the degradation of different micropollutants present in the simulated wastewater matrix and their individual degradation kinetics. It is interesting to observe that MB and RhB have shown the maximum degradation followed by CIP (96.21, 96.15 and 89.62%, respectively). In addition, a microbiological assay has also been performed to check the toxicity variation in the degraded products. It is quite interesting to observe that the simulated wastewater matrix has completely lost its microbial toxicity within 120 min of UV/TiO2-based photocatalytic treatment. Finally, total organic carbon evaluations of various treated samples have also been performed and the obtained results substantiate the theory of assimilable organic carbon.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
H. Ali, Water Air Soil Pollut. (2010). doi:10.1007/s11270-010-0382-4
S.K. Khetan, T.J. Collins, Chem. Rev. (2007). doi:10.1021/cr020441w
I. Michael, L. Rizzo, C.S. Mcardell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Water Res. (2012). doi:10.1016/j.watres.2012.11.027
A.J. Watkinson, E.J. Murby, S.D. Costanzo, Water Res. (2007). doi:10.1016/j.watres.2007.04.005
J. Corcoran, M.J. Winter, C.R. Tyler, Crit. Rev. Toxicol. (2010). doi:10.3109/10408440903373590
V.L. Cunningham, S.P. Binks, M.J. Olson, Regul. Toxicol. Pharmacol. (2009). doi:10.1016/j.yrtph.2008.10.006
M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Desalination (2011). doi:10.1016/j.desal.2011.07.019
M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Carbohydr. Polym. (2014). doi:10.1016/j.carbpol.2014.07.007
P. Verma, J. Kumar, Int. J. Eng. Res. Appl. 4(7), 58–65 (2014)
P. Verma, S.K. Samanta, Comp. Clin. Pathol. (2016). doi:10.1007/s00580-016-2321-2
Antimicrobial resistance: global report on surveillance. World Health Organization (2014). www.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf
V.K. Gupta, Suhas. J. Environ. Manage. (2009). doi:10.1016/j.jenvman.2008.11.017
T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. (2001). doi:10.1016/S0960-8524(00)00080-8
V. Homem, L. Santos, J. Environ. Manag. (2011). doi:10.1016/j.jenvman.2011.05.023
D. Huang, C. Hu, G. Zeng, M. Cheng, P. Xu, X. Gong, R. Wang, W. Xue, Sci. Total Environ. (2017). doi:10.1016/j.scitotenv.2016.08.199
D. Huang, R. Wang, Y. Liu, G. Zeng, C. Lai, P. Xu, B. Lu, J. Xu, C. Wang, C. Huang, Environ. Sci. Pollut. Res. (2015). doi:10.1007/s11356-014-3599-8
M.G. Alalm, A. Tawfik, S. Ookawara, J. Environ. Chem. Eng. (2016). doi:10.1016/j.jece.2016.03.023
U.G. Akpan, B.H. Hameed, J. Hazard. Mater. (2009). doi:10.1016/j.jhazmat.2009.05.039
A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A Chem. (2010). doi:10.1016/j.molcata.2010.05.023
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. (2014). doi:10.1021/cr5001892
R. Shetty, V.B. Chavan, P.S. Kulkarni, B.D. Kulkarni, S.P. Kamble, Indian Chem. Eng. (2016). doi:10.1080/00194506.2016.1150794
L. Zhou, L. Wang, J. Zhang, J. Lei, Y. Liu, Res. Chem. Intermed. (2016). doi:10.1007/s11164-016-2748-8
H. Zhang, D. Liu, S. Ren, H. Zhang, Res. Chem. Intermed. (2017). doi:10.1007/s11164-016-2713-6
M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. (2010). doi:10.1016/j.watres.2010.02.039
K. Ikehata, N.J. Naghashkar, M.G. El-Din, Ozone Sci. Eng. (2006). doi:10.1080/01919510600985937
R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Mater. Sci. Forum (2013). doi:10.4028/www.scientific.net/MSF.734.247
M. Umar, H.A. Aziz, InTech (2013) doi:10.5772/53699. http://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/photocatalytic-degradation-of-organic-pollutants-in-water
C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. (2014). doi:10.1039/C4EE01299B
M. Pirilä, M. Saouabe, S. Ojala, B. Rathnayake, F. Drault, A. Valtanen, M. Huuhtanen, R. Brahmi, R.L. Keiski, Top. Catal. (2015). doi:10.1007/s11244-015-0477-7
X. Zhu, D. Zhou, L. Cang, Y. Wang, J. Soils Sediments (2012). doi:10.1007/s11368-011-0464-y
X. Zhu, Y. Wang, D. Zhou, J. Soils Sediments (2014). doi:10.1007/s11368-014-0883-7
B. Xiong, A. Zhou, G. Zheng, J. Zhang, W. Xu, J. Soils Sediments (2015). doi:10.1007/s11368-015-1139-x
S. Rahimi, B. Ayati, A. Rezaee, Res. Chem. Intermed. (2017). doi:10.1007/s11164-016-2740-3
D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. (2000). doi:10.1016/S0169-4332(99)00508-5
S. Bakardjieva, J. Šubrt, V. Štengl, M.J. Dianez, M.J. Sayagues, Appl. Catal. B. (2005). doi:10.1016/j.apcatb.2004.06.019
A. Kafizas, X. Wang, S.R. Pendlebury, P. Barnes, M. Ling, C. Sotelo-Vazquez, R. Quesada-Cabrera, C. Li, I.P. Parkin, J.R. Durrant, J. Phys. Chem. A (2016). doi:10.1021/acs.jpca.5b11567
A. Kaur, A. Umar, S.K. Kansal, J. Colloid Interface Sci. (2015). doi:10.1016/j.jcis.2015.08.010
I. Karabay, S.A. Yüksel, F. Ongül, S. Öztürk, M. Asli, Acta Phys. Pol. A 121, 265–267 (2012)
S.K. Kansal, M. Chopra, Engineering (2012). doi:10.4236/eng.2012.48055
C.C. Lin, Y.J. Chiang, Chem. Eng. J. (2012). doi:10.1016/j.cej.2011.11.062
Y. Ye, H. Yang, R. Li, X. Wang, J. Sol–Gel. Sci. Technol. (2017). doi:10.1007/s10971-017-4332-0
Y.A. Attia, T.A. Altalhi, Res. Chem. Intermed. (2017). doi:10.1007/s11164-017-2862-2
A. Eshaghi, S. Hayeripour, A. Eshaghi, Res. Chem. Intermed. (2016). doi:10.1007/s11164-015-2161-8
R. Lakshmipathy, M.K. Kesarla, A.R. Nimmala, S. Godavarthi, C.M. Kukkambakam, L.M. Gomez, N.C. Sarada, Res. Chem. Intermed. (2017). doi:10.1007/s11164-016-2700-y
X. Lü, J. Shen, D. Fan, J. Wang, Z. Cui, J. Xie, Res. Chem. Intermed. (2015). doi:10.1007/s11164-015-1953-1
E. Safaralizadeh, S.J. Darzi, A.R. Mahjoub, R. Abazari, Res. Chem. Intermed. (2017). doi:10.1007/s11164-016-2692-7
Y. Wu, L. Tao, J. Zhao, X. Yue, W. Deng, Y. Li, C. Wang, Res. Chem. Intermed. (2016). doi:10.1007/s11164-015-2234-8
M. Bazri, M. Mohseni, Environ. Sci. Water Res. Technol. (2016). doi:10.1039/c5ew00235d
D. Huang, W. Xue, G. Zeng, J. Wan, G. Chen, C. Huang, C. Zhang, M. Cheng, P. Xu, Water Res. (2016). doi:10.1016/j.watres.2016.09.050
Acknowledgements
The authors would like to thank Dr. Sushant Kumar, Dr. Subrata Hait and Dr. A. K. Thakur from IIT Patna for their help, support and cooperation. The authors would also like to thank the anonymous reviewers for their critical comments and suggestions that improved the quality of the revised manuscript.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Verma, P., Samanta, S.K. Degradation kinetics of pollutants present in a simulated wastewater matrix using UV/TiO2 photocatalysis and its microbiological toxicity assessment. Res Chem Intermed 43, 6317–6341 (2017). https://doi.org/10.1007/s11164-017-2992-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11164-017-2992-6