Skip to main content

Degradation kinetics of pollutants present in a simulated wastewater matrix using UV/TiO2 photocatalysis and its microbiological toxicity assessment


Water pollution is one of the major concerns over long-term sustainability of the environment. Effective and efficient treatment of polluted wastewater is still a serious challenge for global researchers. In the last 2–3 decades, due to the incessant emergence of micropollutants in surface and ground water bodies, several endeavors have been made to resolve the water pollution issues either through chemical, physical and biological degradation processes or through removal/separation processes using different adsorbents and membranes. It has been found that most of the studies are mainly limited to single or binary pollutant analysis in a pure water matrix. Therefore, in this novel investigation, a mixture of five different pollutants has been studied for UV/TiO2-based photocatalytic degradation. In the present study, a commercially available TiO2, an antibiotic, i.e. Ciprofloxacin and four different synthetic dyes, i.e. Rhodamine B, Methylene Blue, Methyl Orange and Amaranth have been used as a photocatalyst, a pharmaceutical and various industrial dyes, respectively, in a batch photocatalytic reactor system with a stirrer. It is important to note that the commercial TiO2 photocatalyst has also been characterized with the help of several characterization techniques. The present study is mainly focused on the degradation of different micropollutants present in the simulated wastewater matrix and their individual degradation kinetics. It is interesting to observe that MB and RhB have shown the maximum degradation followed by CIP (96.21, 96.15 and 89.62%, respectively). In addition, a microbiological assay has also been performed to check the toxicity variation in the degraded products. It is quite interesting to observe that the simulated wastewater matrix has completely lost its microbial toxicity within 120 min of UV/TiO2-based photocatalytic treatment. Finally, total organic carbon evaluations of various treated samples have also been performed and the obtained results substantiate the theory of assimilable organic carbon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    H. Ali, Water Air Soil Pollut. (2010). doi:10.1007/s11270-010-0382-4

    Google Scholar 

  2. 2.

    S.K. Khetan, T.J. Collins, Chem. Rev. (2007). doi:10.1021/cr020441w

    Google Scholar 

  3. 3.

    I. Michael, L. Rizzo, C.S. Mcardell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Water Res. (2012). doi:10.1016/j.watres.2012.11.027

    Google Scholar 

  4. 4.

    A.J. Watkinson, E.J. Murby, S.D. Costanzo, Water Res. (2007). doi:10.1016/j.watres.2007.04.005

    Google Scholar 

  5. 5.

    J. Corcoran, M.J. Winter, C.R. Tyler, Crit. Rev. Toxicol. (2010). doi:10.3109/10408440903373590

    Google Scholar 

  6. 6.

    V.L. Cunningham, S.P. Binks, M.J. Olson, Regul. Toxicol. Pharmacol. (2009). doi:10.1016/j.yrtph.2008.10.006

    Google Scholar 

  7. 7.

    M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Desalination (2011). doi:10.1016/j.desal.2011.07.019

    Google Scholar 

  8. 8.

    M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Carbohydr. Polym. (2014). doi:10.1016/j.carbpol.2014.07.007

    Google Scholar 

  9. 9.

    P. Verma, J. Kumar, Int. J. Eng. Res. Appl. 4(7), 58–65 (2014)

    Google Scholar 

  10. 10.

    P. Verma, S.K. Samanta, Comp. Clin. Pathol. (2016). doi:10.1007/s00580-016-2321-2

    Google Scholar 

  11. 11.

    Antimicrobial resistance: global report on surveillance. World Health Organization (2014).

  12. 12.

    V.K. Gupta, Suhas. J. Environ. Manage. (2009). doi:10.1016/j.jenvman.2008.11.017

    Google Scholar 

  13. 13.

    T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. (2001). doi:10.1016/S0960-8524(00)00080-8

    Google Scholar 

  14. 14.

    V. Homem, L. Santos, J. Environ. Manag. (2011). doi:10.1016/j.jenvman.2011.05.023

    Google Scholar 

  15. 15.

    D. Huang, C. Hu, G. Zeng, M. Cheng, P. Xu, X. Gong, R. Wang, W. Xue, Sci. Total Environ. (2017). doi:10.1016/j.scitotenv.2016.08.199

    Google Scholar 

  16. 16.

    D. Huang, R. Wang, Y. Liu, G. Zeng, C. Lai, P. Xu, B. Lu, J. Xu, C. Wang, C. Huang, Environ. Sci. Pollut. Res. (2015). doi:10.1007/s11356-014-3599-8

    Google Scholar 

  17. 17.

    M.G. Alalm, A. Tawfik, S. Ookawara, J. Environ. Chem. Eng. (2016). doi:10.1016/j.jece.2016.03.023

    Google Scholar 

  18. 18.

    U.G. Akpan, B.H. Hameed, J. Hazard. Mater. (2009). doi:10.1016/j.jhazmat.2009.05.039

    Google Scholar 

  19. 19.

    A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A Chem. (2010). doi:10.1016/j.molcata.2010.05.023

    Google Scholar 

  20. 20.

    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. (2014). doi:10.1021/cr5001892

    Google Scholar 

  21. 21.

    R. Shetty, V.B. Chavan, P.S. Kulkarni, B.D. Kulkarni, S.P. Kamble, Indian Chem. Eng. (2016). doi:10.1080/00194506.2016.1150794

    Google Scholar 

  22. 22.

    L. Zhou, L. Wang, J. Zhang, J. Lei, Y. Liu, Res. Chem. Intermed. (2016). doi:10.1007/s11164-016-2748-8

    Google Scholar 

  23. 23.

    H. Zhang, D. Liu, S. Ren, H. Zhang, Res. Chem. Intermed. (2017). doi:10.1007/s11164-016-2713-6

    Google Scholar 

  24. 24.

    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. (2010). doi:10.1016/j.watres.2010.02.039

    Google Scholar 

  25. 25.

    K. Ikehata, N.J. Naghashkar, M.G. El-Din, Ozone Sci. Eng. (2006). doi:10.1080/01919510600985937

    Google Scholar 

  26. 26.

    R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Mater. Sci. Forum (2013). doi:10.4028/

    Google Scholar 

  27. 27.

    M. Umar, H.A. Aziz, InTech (2013) doi:10.5772/53699.

  28. 28.

    C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. (2014). doi:10.1039/C4EE01299B

    Google Scholar 

  29. 29.

    M. Pirilä, M. Saouabe, S. Ojala, B. Rathnayake, F. Drault, A. Valtanen, M. Huuhtanen, R. Brahmi, R.L. Keiski, Top. Catal. (2015). doi:10.1007/s11244-015-0477-7

    Google Scholar 

  30. 30.

    X. Zhu, D. Zhou, L. Cang, Y. Wang, J. Soils Sediments (2012). doi:10.1007/s11368-011-0464-y

    Google Scholar 

  31. 31.

    X. Zhu, Y. Wang, D. Zhou, J. Soils Sediments (2014). doi:10.1007/s11368-014-0883-7

    Google Scholar 

  32. 32.

    B. Xiong, A. Zhou, G. Zheng, J. Zhang, W. Xu, J. Soils Sediments (2015). doi:10.1007/s11368-015-1139-x

    Google Scholar 

  33. 33.

    S. Rahimi, B. Ayati, A. Rezaee, Res. Chem. Intermed. (2017). doi:10.1007/s11164-016-2740-3

    Google Scholar 

  34. 34.

    D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. (2000). doi:10.1016/S0169-4332(99)00508-5

    Google Scholar 

  35. 35.

    S. Bakardjieva, J. Šubrt, V. Štengl, M.J. Dianez, M.J. Sayagues, Appl. Catal. B. (2005). doi:10.1016/j.apcatb.2004.06.019

    Google Scholar 

  36. 36.

    A. Kafizas, X. Wang, S.R. Pendlebury, P. Barnes, M. Ling, C. Sotelo-Vazquez, R. Quesada-Cabrera, C. Li, I.P. Parkin, J.R. Durrant, J. Phys. Chem. A (2016). doi:10.1021/acs.jpca.5b11567

    Google Scholar 

  37. 37.

    A. Kaur, A. Umar, S.K. Kansal, J. Colloid Interface Sci. (2015). doi:10.1016/j.jcis.2015.08.010

    Google Scholar 

  38. 38.

    I. Karabay, S.A. Yüksel, F. Ongül, S. Öztürk, M. Asli, Acta Phys. Pol. A 121, 265–267 (2012)

    CAS  Article  Google Scholar 

  39. 39.

    S.K. Kansal, M. Chopra, Engineering (2012). doi:10.4236/eng.2012.48055

    Google Scholar 

  40. 40.

    C.C. Lin, Y.J. Chiang, Chem. Eng. J. (2012). doi:10.1016/j.cej.2011.11.062

    Google Scholar 

  41. 41.

    Y. Ye, H. Yang, R. Li, X. Wang, J. Sol–Gel. Sci. Technol. (2017). doi:10.1007/s10971-017-4332-0

    Google Scholar 

  42. 42.

    Y.A. Attia, T.A. Altalhi, Res. Chem. Intermed. (2017). doi:10.1007/s11164-017-2862-2

    Google Scholar 

  43. 43.

    A. Eshaghi, S. Hayeripour, A. Eshaghi, Res. Chem. Intermed. (2016). doi:10.1007/s11164-015-2161-8

    Google Scholar 

  44. 44.

    R. Lakshmipathy, M.K. Kesarla, A.R. Nimmala, S. Godavarthi, C.M. Kukkambakam, L.M. Gomez, N.C. Sarada, Res. Chem. Intermed. (2017). doi:10.1007/s11164-016-2700-y

    Google Scholar 

  45. 45.

    X. Lü, J. Shen, D. Fan, J. Wang, Z. Cui, J. Xie, Res. Chem. Intermed. (2015). doi:10.1007/s11164-015-1953-1

    Google Scholar 

  46. 46.

    E. Safaralizadeh, S.J. Darzi, A.R. Mahjoub, R. Abazari, Res. Chem. Intermed. (2017). doi:10.1007/s11164-016-2692-7

    Google Scholar 

  47. 47.

    Y. Wu, L. Tao, J. Zhao, X. Yue, W. Deng, Y. Li, C. Wang, Res. Chem. Intermed. (2016). doi:10.1007/s11164-015-2234-8

    Google Scholar 

  48. 48.

    M. Bazri, M. Mohseni, Environ. Sci. Water Res. Technol. (2016). doi:10.1039/c5ew00235d

    Google Scholar 

  49. 49.

    D. Huang, W. Xue, G. Zeng, J. Wan, G. Chen, C. Huang, C. Zhang, M. Cheng, P. Xu, Water Res. (2016). doi:10.1016/j.watres.2016.09.050

    Google Scholar 

Download references


The authors would like to thank Dr. Sushant Kumar, Dr. Subrata Hait and Dr. A. K. Thakur from IIT Patna for their help, support and cooperation. The authors would also like to thank the anonymous reviewers for their critical comments and suggestions that improved the quality of the revised manuscript.

Author information



Corresponding author

Correspondence to Sujoy Kumar Samanta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 267 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Samanta, S.K. Degradation kinetics of pollutants present in a simulated wastewater matrix using UV/TiO2 photocatalysis and its microbiological toxicity assessment. Res Chem Intermed 43, 6317–6341 (2017).

Download citation


  • Photocatalysis
  • TiO2
  • Antibiotic
  • Dye
  • Wastewater treatment
  • TOC
  • AOC
  • Microbial toxicity