Skip to main content
Log in

Density functional study on the tautomerism of pyrano[2,3-d]pyrimidine derivative: intramolecular and intermolecular proton transfer

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The proton transfer reaction mechanisms in the anhydrous and monohydrated forms of 7-amino-6-cyano-5-benzene-5H-pyrano[2,3-d]pyrimidine-2,4(1H,3H)-diones on the transition state structures have been carried out in the gas phase using the B3LYP density functional method. For the reaction, three possible mechanisms are considered and three pathways are subsequently discussed. Meanwhile, the assistant effects of water molecules in the 1st path, which is considered as the best way of proton transfer, have been discussed in detail with the number of water molecules increasing. Results reveal that water molecules hold a strong catalysis effect on the proton transfer, and the polar solvent is favorable to the stability of complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Podolyan, L. Gorb, J. Leszczynski, J. Phys. Chem. A 106, 50 (2002)

    Article  Google Scholar 

  2. X. Hu, H. Li, W. Liang, S. Han, J. Phys. Chem. B 108, 34 (2004)

    Google Scholar 

  3. Y. Kim, S. Lim, H.J. Kim, Y. Kim, J. Phys. Chem. A 103, 5 (1999)

    Google Scholar 

  4. Y. Zhang, K. de La Harpe, A.A. Beckstead, R. Improta, B. Kohler, J. Am. Chem. Soc. 137, 22 (2015)

    Article  Google Scholar 

  5. J. Yu, H. Wang, Synth. Commun. 35, 24 (2005)

    Article  CAS  Google Scholar 

  6. T. Fornaro, D. Burini, M. Biczysko, V. Barone, J. Phys. Chem. A 119, 18 (2015)

    Google Scholar 

  7. S.H. Li, N. Gao, J.T. Li, Chin. J. Org. Chem. 29, 3 (2009)

    CAS  Google Scholar 

  8. J. Liang, M.M. Zhang, X.Y. Wei, Z.M. Zong, X.S. Wang, Chin. J. Org. Chem. 27, 11 (2007)

    Google Scholar 

  9. S. Rostamnia, H. Xin, X. Liu, K. Lamei, J. Mol. Catal. A Chem. 85, 374–375 (2013)

    Google Scholar 

  10. S. Rostamnia, A. Hassankhani, H.G. Hossieni, B. Gholipour, H. Xin, J. Mol. Catal. A Chem. 395, 463 (2014)

    Article  CAS  Google Scholar 

  11. S. Rostamnia, A. Morsali, Inorg. Chim. Acta 411, 113 (2014)

    Article  CAS  Google Scholar 

  12. K. Yalagala, S. Maddila, S. Rana, S.N. Maddila, S. Kalva, A.A. Skelton, S.B. Jonnalagadda, Res. Chem. Intermed. 42, 4 (2015)

    Google Scholar 

  13. Y. Gao, S. Tu, T. Li, X. Zhang, S. Zhu, F. Fang, D. Shi, Synth. Commun. 34, 7 (2004)

    Google Scholar 

  14. S. Rostamnia, A. Nuri, H. Xin, A. Pourjavadi, S.H. Hosseini, Tetrahedron Lett. 54, 26 (2013)

    Article  Google Scholar 

  15. R. Li, D. Feng, S. Feng, J. Phys. Chem. A 113, 8 (2009)

    Google Scholar 

  16. N. Díaz, D. Suárez, T.L. Sordo, K.M. Merz, J. Am. Chem. Soc. 123, 31 (2001)

    Google Scholar 

  17. L. Olsen, J. Antony, U. Ryde, H.-W. Adolph, L. Hemmingsen, J. Phys. Chem. B 107, 10 (2003)

    Article  Google Scholar 

  18. S. Catak, G. Monard, V. Aviyente, M.F. Ruiz-Lopez, J. Phys. Chem. A 110, 27 (2006)

    Article  Google Scholar 

  19. S. Catak, G. Monard, V. Aviyente, M.F. Ruiz-Lopez, J. Phys. Chem. A 113, 6 (2009)

    Article  Google Scholar 

  20. G.P. Miscione, M. Calvaresi, A. Bottoni, J. Phys. Chem. B 114, 13 (2010)

    Article  Google Scholar 

  21. D. Li, H. Ai, J. Phys. Chem. B 113, 34 (2009)

    Google Scholar 

  22. M.-P. Gaigeot, M. Sprik, J. Phys. Chem. B 108, 22 (2004)

    Article  Google Scholar 

  23. A. Fu, H. Li, D. Du, Z. Zhou, J. Phys. Chem. A 109, 7 (2005)

    Google Scholar 

  24. M.J. Frisch, J.A. Pople, J.E. Del Bene, J. Chem. Phys. 78, 6 (1983)

    Article  Google Scholar 

  25. C.D. Valentin, M. Freccero, R. Zanaletti, M. Sarzi-Amadè, J. Am. Chem. Soc. 123, 34 (2001)

    Google Scholar 

  26. A.L. de Noronha, L. Guimaraes, H.A. Duarte, J. Chem. Theory Comput. 3, 3 (2007)

    Article  Google Scholar 

  27. M. Freccero, C. Di Valentin, M. Sarzi-Amade, J. Am. Chem. Soc. 125, 12 (2003)

    Article  Google Scholar 

  28. A.E. Reed, F. Weinhold, J. Chem. Phys. 78, 4066 (1983)

    Article  CAS  Google Scholar 

  29. S. Kulchat, K. Meguellati, J.-M. Lehn, Helv. Chim. Acta 97, 1219 (2014)

    Article  CAS  Google Scholar 

  30. S. Morpurgo, M. Brahimi, M. Bossa, G.O. Morpurgo, J. Mol. Struct. THEOCHEM 429, 197 (1998)

    Article  CAS  Google Scholar 

  31. J.-F. Lin, C.-C. Wu, M.-H. Lien, J. Phys. Chem. 99, 46 (1995)

    Google Scholar 

  32. C.-C. Su, C.-K. Lin, C.-C. Wu, M.-H. Lien, J. Phys. Chem. A 103, 17 (1999)

    Google Scholar 

  33. P. Pérez, A. Toro-Labbé, J. Phys. Chem. A 104, 7 (2000)

    Google Scholar 

  34. A.J. Gallant, M. Yun, M. Sauer, C.S. Yeung, M.J. MacLachlan, Org. Lett. 7, 22 (2005)

    Article  Google Scholar 

  35. K. Lammertsma, P.V. Bharatam, J. Org. Chem. 65, 4662 (2000)

    Article  CAS  Google Scholar 

  36. H.W. Kroto, G.Y. Matti, R.J. Suffolk, J.D. Watts, M. Rittby, R.J. Bartlett, J. Am. Chem. Soc. 112, 10 (1990)

    Article  Google Scholar 

  37. T. Kamachi, K. Yoshizawa, J. Am. Chem. Soc. 127, 30 (2005)

    Article  Google Scholar 

  38. C. Kanazawa, M. Terada, Tetrahedron Lett. 48, 6 (2007)

    Article  Google Scholar 

  39. J. Li, E. Chin, A.S. Lui, L. Chen, Tetrahedron Lett. 51, 45 (2010)

    Google Scholar 

  40. M.M. Heravi, A. Ghods, K. Bakhtiari, F. Derikvand, Synth. Commun. 40, 13 (2010)

    Google Scholar 

  41. S. Mashkouri, M.R. Naimi-Jamal, Molecules 14, 1 (2009)

    Article  Google Scholar 

  42. D. Kina, A. Nakayama, T. Noro, T. Taketsugu, M.S. Gordon, J. Phys. Chem. A 112, 40 (2008)

    Article  Google Scholar 

  43. A.E. Shchavlev, A.N. Pankratov, A.V. Shalabay, J. Phys. Chem. A 109, 18 (2005)

    Google Scholar 

  44. A. Kyrychenko, J. Waluk, J. Phys. Chem. A 110, 43 (2006)

    Article  Google Scholar 

  45. P. Jaramillo, K. Coutinho, S. Canuto, J. Phys. Chem. A 113, 12485 (2009)

    Article  CAS  Google Scholar 

  46. R. Steudel, Y. Steudel, J. Phys. Chem. A 113, 36 (2009)

    Google Scholar 

  47. X. Hu, H. Li, W. Liang, S. Han, J. Phys. Chem. B 109, 12 (2005)

    Google Scholar 

  48. C.R. Waidmann, X. Zhou, E.A. Tsai, W. Kaminsky, D.A. Hrovat, W.T. Borden, J.M. Mayer, J. Am. Chem. Soc. 131, 13 (2009)

    Article  Google Scholar 

  49. K. Lammertsma, B.V. Prasad, J. Am. Chem. Soc. 116, 2 (1994)

    Article  Google Scholar 

  50. V.S. Znamenskiy, M.E. Green, J. Phys. Chem. A 108, 31 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the National Natural Science of Foundation of China (No. 21376220) and the Natural Science Foundations of Zhejiang Province (No. LY12B03008 and LY16B060009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litao Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Chen, L. & Ma, C. Density functional study on the tautomerism of pyrano[2,3-d]pyrimidine derivative: intramolecular and intermolecular proton transfer. Res Chem Intermed 43, 4795–4812 (2017). https://doi.org/10.1007/s11164-017-2912-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-2912-9

Keywords

Navigation