Skip to main content
Log in

Recyclable CoFe2O4–Ag2O magnetic photocatalyst and its visible light-driven photocatalytic performance

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A magnetically separable photocatalyst, the composite compound CoFe2O4–Ag2O, was fabricated successfully by a simple precipitation method and used for photodegradation of organic pollutants under visible light (>420 nm) irradiation. Its magnetic separation performance was evaluated. Results showed that the CoFe2O4–Ag2O with 60-wt% content of Ag2O had the best photocatalytic performance, stability, and magnetic separation performance. Methyl orange, methylene blue, rhodamine B, and phenol can be completely photodegraded by the CoFe2O4–Ag2O photocatalyst in a short period. After five cycles, CoFe2O4–Ag2O kept its performance stability. As prepared, CoFe2O4–Ag2O (60%) has a coercivity of 2500 Oe and a saturation magnetization of 22.45 emu g−1; it can be completely separated magnetically in 20 s with magnetic recovery mass rate of 85% under an external magnetic field. This superb photocatalytic performance and separation recovery confirms that the CoFe2O4–Ag2O photocatalyst is a promising candidate for future use in photo-oxidative degradation of organic contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res 44, 2997–3027 (2010)

    Article  CAS  Google Scholar 

  2. M.F.R. Pereira, S.F. Soares, J.J.M. Órfão, J.L. Figueiredo, Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41, 811–821 (2003)

    Article  CAS  Google Scholar 

  3. S. Wang, Y. Boyjoo, A. Choueib, Z.H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud. Water Res 39, 129–138 (2005)

    Article  CAS  Google Scholar 

  4. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40, 997–1026 (2005)

    Article  CAS  Google Scholar 

  5. Z. Du, H. Li, T. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25, 464–482 (2007)

    Article  CAS  Google Scholar 

  6. G. Chen, Electrochemical technologies in wastewater treatment. Sep Purif Technol 38, 11–41 (2004)

    Article  Google Scholar 

  7. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95, 735–758 (1995)

    Article  CAS  Google Scholar 

  8. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl Catal B Environ 49, 1–14 (2004)

    Article  CAS  Google Scholar 

  9. A. Fujishima, X. Zhang, D. Tryk, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrogen Energy 32, 2664–2672 (2007)

    Article  CAS  Google Scholar 

  10. D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol, C 6, 186–205 (2005)

    Article  CAS  Google Scholar 

  11. R. Murugan, V.J. Babu, M.M. Khin, A.S. Nair, S. Ramakrishna, Synthesis and photocatalytic applications of flower shaped electrospun ZnO–TiO2 mesostructures. Mater Lett 97, 47–51 (2013)

    Article  CAS  Google Scholar 

  12. J. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem 47, 1766–1769 (2008)

    Article  CAS  Google Scholar 

  13. Y. Gai, J. Li, S.S. Li, J.B. Xia, S.H. Wei, Design of narrow-gap TiO2: a passivated godoping approach for enhanced photoelectrochemical activity. Phys Rev Lett 102, 3–23 (2009)

    Article  Google Scholar 

  14. Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J Am Chem Soc 133, 6490–6492 (2011)

    Article  CAS  Google Scholar 

  15. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater 9, 559–564 (2010)

    Article  CAS  Google Scholar 

  16. W. Jiang, Y. Zeng, X. Wang, X. Yue, S. Yuan, H. Lu, B. Liang, Preparation of silver carbonate and its application as visible light-driven photocatalyst without sacrificial reagent. Photochem Photobiol 91, 1315–1323 (2015)

    Article  CAS  Google Scholar 

  17. H. Dong, G. Chen, J. Sun, C. Li, Y. Yu, D. Chen, A novel high-efficiency visible-light sensitive Ag2CO3 photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study. Appl Catal B Environ 134–135, 46–54 (2013)

    Article  Google Scholar 

  18. G. Dai, J. Yu, G. Liu, A new approach for photocorrosion inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity. J Phys Chem C 116, 15519–15524 (2012)

    Article  CAS  Google Scholar 

  19. J. Tang, Y. Liu, H. Li, Z. Tan, D. Li, A novel Ag3AsO4 visible-light-responsive photocatalyst: facile synthesis and exceptional photocatalytic performance. Chem Commun 49, 5498 (2013)

    Article  CAS  Google Scholar 

  20. J. Zhou, Y. Cheng, J. Yu, Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J Photochem Photobiol, A 223, 82–87 (2011)

    Article  CAS  Google Scholar 

  21. C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110, 4066–4072 (2006)

    Article  CAS  Google Scholar 

  22. H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26, 6618–6624 (2010)

    Article  CAS  Google Scholar 

  23. W. Jiang, Z. Wu, X. Yue, S. Yuan, H. Lu, B. Liang, Photocatalytic performance of Ag2S under irradiation with visible and near-infrared light and its mechanism of degradation. RSC Adv 5, 24064–24071 (2015)

    Article  CAS  Google Scholar 

  24. W. Jiang, X. Wang, Z. Wu, X. Yue, S. Yuan, H. Lu, B. Liang, Silver oxide as superb and stable photocatalyst under visible and near-infrared light irradiation and its photocatalytic mechanism. Ind Eng Chem Res 54, 832–841 (2015)

    Article  CAS  Google Scholar 

  25. X. Wang, S. Li, H. Yu, J. Yu, S. Liu, Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity. Chem Eur J 17, 7777–7780 (2011)

    Article  CAS  Google Scholar 

  26. S. Shylesh, V. Schünemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Edit 49, 3428–3459 (2010)

    Article  CAS  Google Scholar 

  27. X. Cui, Y. Li, Q. Zhang, H. Wang, Silver orthophosphate immobilized on flaky layered double hydroxides as the visible-light-driven photocatalysts. Int J Photoenergy 2012, 1–6 (2012)

    Article  Google Scholar 

  28. J.M. Campelo, D. Luna, R. Luque, J.M. Marinas, Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2, 18–45 (2009)

    Article  CAS  Google Scholar 

  29. P. Chaus, A. Brückner, C. Mohr, H. Hofmeister, Supported gold nanoparticles from quantum dot to mesoscopic size scale: effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J Am Chem Soc 122, 11430–11439 (2000)

    Article  Google Scholar 

  30. Y. Fu, H. Chen, X. Sun, X. Wang, Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B Environ 111–112, 280–287 (2012)

    Article  Google Scholar 

  31. L. Chen, W. Ma, J. Dai, J. Zhao, C. Li, Y. Yan, Facile synthesis of highly efficient graphitic-C3N4/ZnFe2O4 heterostructures enhanced visible-light photocatalysis for spiramycin degradation. J Photochem Photobiol, A 328, 24–32 (2016)

    Article  CAS  Google Scholar 

  32. S. Rana, J. Rawat, R.D.K. Misra, Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomater 1, 691–703 (2005)

    Article  CAS  Google Scholar 

  33. H. Zhang, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004)

    Article  Google Scholar 

  34. H.A.J.L. Mourão, A.R. Malagutti, C. Ribeiro, Synthesis of TiO2-coated CoFe2O4 photocatalysts applied to the photodegradation of atrazine and rhodamine B in water. Appl Catal A Gen 382, 284–292 (2010)

    Article  Google Scholar 

  35. C. Borgohain, K.K. Senapati, K.C. Sarma, P. Phukan, A facile synthesis of nanocrystalline CoFe2O4 embedded one-dimensional ZnO hetero-structure and its use in photocatalysis. J Mol Catal A: Chem 363–364, 495–500 (2012)

    Article  Google Scholar 

  36. Z. Szotek, W.M. Temmerman, D. Ködderitzsch, A. Svane, L. Petit, H. Winter, Electronic structures of normal and inverse spinel ferrites from first principles. Phys Rev B 74, 174431 (2006)

    Article  Google Scholar 

  37. Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 40, 1119–1126 (2006)

    Article  CAS  Google Scholar 

  38. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B Environ 39, 75–90 (2002)

    Article  CAS  Google Scholar 

  39. G.B. Hoflund, Z.F. Hazos, Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys Rev B 62, 11126–11133 (2000)

    Article  CAS  Google Scholar 

  40. G. Wang, Y. Ma, Z. Wei, M. Qi, Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem Eng J 289, 150–160 (2016)

    Article  CAS  Google Scholar 

  41. S.J. Roosendaal, B. van Asselen, J.W. Elsenaar, A.M. Vredenberg, F.H.P.M. Habraken, Surf Sci 442, 329–337 (1990)

    Article  Google Scholar 

  42. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254, 2441–2449 (2008)

    Article  CAS  Google Scholar 

  43. E. Mazario, P. Herrasti, M.P. Morales, N. Menendez, Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23, 355708 (2012)

    Article  CAS  Google Scholar 

  44. M. Ge, N. Zhu, Y. Zhao, J. Li, L. Liu, Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension. Ind Eng Chem Res 51, 5167–5173 (2012)

    Article  CAS  Google Scholar 

  45. L.-M. Lyu, M.H. Huang, Investigation of relative stability of different facets of Ag2O nanocrystals through face-selective etching. J Phys Chem C 115, 17768–17773 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the financial support provided by the National Natural Science Foundation of China Project (no. 21476146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Zhu, Y., Tian, W. et al. Recyclable CoFe2O4–Ag2O magnetic photocatalyst and its visible light-driven photocatalytic performance. Res Chem Intermed 43, 4487–4502 (2017). https://doi.org/10.1007/s11164-017-2891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-2891-x

Keywords

Navigation