Abstract
The double-layer photoanodes fabricated from TiO2 nanoparticles (np-TiO2) and TiO2 powder (P25) for dye-sensitized solar cells (DSSCs) are reported. The np-TiO2 was deposited on FTO substrates by a sparking technique. The PT1 and PT2 DSSCs were composed of FTO/P25/np-TiO2/N719/electrolyte/Pt and FTO/np-TiO2/P25/N719/electrolyte/Pt, respectively. The Nyquist plot and equivalent circuit of impedance of the DSSCs are also explained and discussed. In this research, the PT1 DSSC with a 1 h sparking period has the highest efficiency of 3.62, 50.21% higher than that of the reference. The enhancement is explained by the increase of adsorption of dye molecules that lead to a remarkable improvement in short-circuit photocurrent (J sc). The pore size distribution with increasing the film thickness played a role in the penetration of the electrolyte, dye molecules and effective surface area. Moreover, a decrease in the interfacial resistance was detected in the P25/np-TiO2 double-layered photoanode, leading to fast charge transport and decreased charge recombination in DSSCs.
This is a preview of subscription content, access via your institution.









References
M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Mater. Today 18, 155–162 (2015)
B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)
S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.D. Curchod, N. Ashari-Astani, I. Taverneli, U. Rothlisberger, M. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242–247 (2014)
K. Hongsith, N. Hongsith, D. Wonggratanaphisan, A. Gardchareon, S. Phadungdhitidhada, P. Singjai, S. Choopun, Thin Solid Films 539, 260–266 (2013)
P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, ACS Nano 5, 5158–5166 (2011)
M. Rudolph, T. Yoshida, H. Miura, D. Schlettwein, J. Phys. Chem. C 119, 1298–1311 (2015)
C.S.K. Ranasinghe, E.N. Jayaweera, G.R.A. Kumara, R.M.G. Rajapakse, B. Onwona-Agyeman, A.G.U. Perera, K. Tennakone, Mater. Sci. Semicond. Process. 40, 890–895 (2015)
S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Adv. Funct. Mater. 18, 2411–2418 (2008)
S. Mori, A. Asano, J. Phys. Chem. C 114, 13113–13117 (2010)
J. He, H. Lindstrom, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B 103, 8940–8943 (1999)
N.K. Huu, D.-Y. Son, I.-H. Jang, C.-R. Lee, N.-G. Park, Interfaces 5, 1038–1043 (2013)
G. Veerappan, D.-W. Jung, J. Kwon, J.M. Choi, N. Heo, G.-R. Yi, J.H. Park, Langmuir 30, 3010–3018 (2014)
C.-S. Chou, M.-G. Guo, K.-H. Liu, Y.-S. Chen, Appl. Energy 92, 224–233 (2012)
Y. Yang, Q. Jin, D. Mao, J. Qi, Y. Wei, R. Yu, A. Li, S. Li, H. Zhao, Y. Ma, L. Wang, W. Hu, D. Wang, Adv. Mater. (2016). doi:10.1002/adma.201604795
X. Lai, J.E. Halpert, D. Wang, Energy Environ. Sci. 5, 5604–5618 (2012)
Z. Dong, H. Ren, C.M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, D. Wang, Adv. Mater. 26, 905–909 (2014)
Z. Dong, X. Lai, J.E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, L. Jiang, Adv. Mater. 24, 1046–1049 (2012)
J. Du, J. Qi, D. Wang, Z. Tang, Energy Environ. Sci. 5, 6914–6918 (2012)
T. Kumpika, W. Thongsuwan, P. singjai. Surf. Interface Anal. 39, 58–63 (2007)
T. Kumpika, W. Thongsuwan, P. Singjai, Thin Solid Films 516, 5640–5644 (2008)
W. Thongsuwan, T. Kumpika, P. Singjai, Curr. Appl. Phys. 8, 563–568 (2008)
W. Thongsuwan, T. Kumpika, P. Singjai, Curr. Appl. Phys. 11, 1237–1242 (2011)
K. Inyawilert, A. Wisitsora-At, A. Tuantranont, P. Singjai, S. Phanichphant, C. Liewhiran, Chem. B 192, 745–754 (2014)
F. Aqra, A. Ayyad, Curr. Appl. Phys. 12, 31–35 (2012)
J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Phys. Chem. Chem. Phys. 15, 10978–10988 (2013)
Y. Zhu, Q. Ling, Y. Liu, H. Wang, Y. Zhu, Phys. Chem. Chem. Phys. 17, 933–940 (2015)
Z. Li, S. Cong, Y. Xu, ACS Catal. 4, 3273–3280 (2014)
M. Rezaee, S. Mohammad, M. Khoie, K.H. Liu, CrystEngComm 13, 5055–5061 (2011)
N. Ghrairi, M. Bouaicha, Nanoscale Res. Lett. 7, 357–363 (2012)
Z.R. Khan, M.S. Khan, M. Zulfequar, M.S. Khan, Mater. Sci. Appl. 2, 340–345 (2011)
Y. Keereeta, T. Thongtem, S. Thongtem, Appl. Surf. Sci. 351, 1075–1080 (2015)
Y. Keereeta, S. Thongtem, T. Thongtem, Powder Technol. 284, 85–94 (2015)
M.N. Ghazzal, R. Wojcieszak, G. Raj, E.M. Gaigneaux, Beilstein J. Nanotechnol. 5, 68–76 (2014)
L. Li, J. Yan, T. Wang, Z.-J. Zhao, J. Zhang, J. Gong, N. Guan, Nat. Commun. 6, 5881–5891 (2015)
S. Rtimi, J. Nesic, C. Pulgarin, R. Sanjines, M. Bensimon, J. Kiwi, Interface Focus 5, 1–12 (2016)
T.V. Larina, L.S. Dovlitova, V.V. Kaichev, V.V. Malakhov, T.S. Glazneva, E.A. Paukshtis, B.S. Bal’zhinimaev, RSC Adv. 5, 79898–79905 (2015)
R. Gao, Z. Liang, J. Tian, Q. Zhang, L. Wang, G.Z. Cao, SC Adv. 3, 8537–8543 (2013)
G. Wang, X. Zhu, J. Yu, J. Power Sources 278, 344–351 (2015)
Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, J. Appl. Phys. 103, 084304 (2008)
F. Al-Juaid, A. Merazga, F. Abdel-Wahab, M. Al-Amoudi, World J. Condens. Matter Phys. 2, 192–196 (2012)
O. Wiranwetchayan, W. Promnopas, K. Hongsith, S. Choopun, P. Singjai, S. Thongtem, Res. Chem. Intermed. 42, 3655–3672 (2016)
M. Pan, N. Huang, X. Zhao, J. Fu, X. Zhong, J. Nanomater. 2013, 760685 (2013)
R. Zhoua, Q. Zhang, E. Uchaker, L. Yang, N. Yin, Y. Che, M. Yin, G.Z. Cao, Electrochimica Acta 135, 284–292 (2014)
J. Tian, L. Lv, X. Wang, C. Fei, X. Liu, Z. Zhao, Y. Wang, G.Z. Cao, J. Phys. Chem. C 118, 16611–16617 (2014)
J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, G. Shao, Appl. Surf. Sci. 319, 75–82 (2014)
K. Park, Q. Zhang, D. Myers, G.Z. Cao, ACS Appl. Mater. Interfaces 5, 1044–1052 (2013)
Acknowledgements
We wish to thank Thailand’s Office of the Higher Education Commission, Thailand Research Fund (TRF), and Chiang Mai University (CMU) for financial support through the co-Fund No. MRG5680025, including Thailand’s Office of the Higher Education Commission through the National Research University (NRU) Project for Chiang Mai University and the Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, through a general support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wiranwetchayan, O., Promnopas, W., Choopun, S. et al. Preparation of TiO2 nanoparticles by sparking technique for enhancing photovoltaic performance of dye-sensitized solar cells. Res Chem Intermed 43, 4339–4352 (2017). https://doi.org/10.1007/s11164-017-2881-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11164-017-2881-z