Skip to main content

Advertisement

Log in

Preparation of TiO2 nanoparticles by sparking technique for enhancing photovoltaic performance of dye-sensitized solar cells

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The double-layer photoanodes fabricated from TiO2 nanoparticles (np-TiO2) and TiO2 powder (P25) for dye-sensitized solar cells (DSSCs) are reported. The np-TiO2 was deposited on FTO substrates by a sparking technique. The PT1 and PT2 DSSCs were composed of FTO/P25/np-TiO2/N719/electrolyte/Pt and FTO/np-TiO2/P25/N719/electrolyte/Pt, respectively. The Nyquist plot and equivalent circuit of impedance of the DSSCs are also explained and discussed. In this research, the PT1 DSSC with a 1 h sparking period has the highest efficiency of 3.62, 50.21% higher than that of the reference. The enhancement is explained by the increase of adsorption of dye molecules that lead to a remarkable improvement in short-circuit photocurrent (J sc). The pore size distribution with increasing the film thickness played a role in the penetration of the electrolyte, dye molecules and effective surface area. Moreover, a decrease in the interfacial resistance was detected in the P25/np-TiO2 double-layered photoanode, leading to fast charge transport and decreased charge recombination in DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Mater. Today 18, 155–162 (2015)

    Article  CAS  Google Scholar 

  2. B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  3. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.D. Curchod, N. Ashari-Astani, I. Taverneli, U. Rothlisberger, M. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242–247 (2014)

    Article  CAS  Google Scholar 

  4. K. Hongsith, N. Hongsith, D. Wonggratanaphisan, A. Gardchareon, S. Phadungdhitidhada, P. Singjai, S. Choopun, Thin Solid Films 539, 260–266 (2013)

    Article  CAS  Google Scholar 

  5. P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, ACS Nano 5, 5158–5166 (2011)

    Article  CAS  Google Scholar 

  6. M. Rudolph, T. Yoshida, H. Miura, D. Schlettwein, J. Phys. Chem. C 119, 1298–1311 (2015)

    Article  CAS  Google Scholar 

  7. C.S.K. Ranasinghe, E.N. Jayaweera, G.R.A. Kumara, R.M.G. Rajapakse, B. Onwona-Agyeman, A.G.U. Perera, K. Tennakone, Mater. Sci. Semicond. Process. 40, 890–895 (2015)

    Article  CAS  Google Scholar 

  8. S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Adv. Funct. Mater. 18, 2411–2418 (2008)

    Article  CAS  Google Scholar 

  9. S. Mori, A. Asano, J. Phys. Chem. C 114, 13113–13117 (2010)

    Article  CAS  Google Scholar 

  10. J. He, H. Lindstrom, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B 103, 8940–8943 (1999)

    Article  CAS  Google Scholar 

  11. N.K. Huu, D.-Y. Son, I.-H. Jang, C.-R. Lee, N.-G. Park, Interfaces 5, 1038–1043 (2013)

    CAS  Google Scholar 

  12. G. Veerappan, D.-W. Jung, J. Kwon, J.M. Choi, N. Heo, G.-R. Yi, J.H. Park, Langmuir 30, 3010–3018 (2014)

    Article  CAS  Google Scholar 

  13. C.-S. Chou, M.-G. Guo, K.-H. Liu, Y.-S. Chen, Appl. Energy 92, 224–233 (2012)

    Article  CAS  Google Scholar 

  14. Y. Yang, Q. Jin, D. Mao, J. Qi, Y. Wei, R. Yu, A. Li, S. Li, H. Zhao, Y. Ma, L. Wang, W. Hu, D. Wang, Adv. Mater. (2016). doi:10.1002/adma.201604795

    Google Scholar 

  15. X. Lai, J.E. Halpert, D. Wang, Energy Environ. Sci. 5, 5604–5618 (2012)

    Article  CAS  Google Scholar 

  16. Z. Dong, H. Ren, C.M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, D. Wang, Adv. Mater. 26, 905–909 (2014)

    Article  CAS  Google Scholar 

  17. Z. Dong, X. Lai, J.E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, L. Jiang, Adv. Mater. 24, 1046–1049 (2012)

    Article  CAS  Google Scholar 

  18. J. Du, J. Qi, D. Wang, Z. Tang, Energy Environ. Sci. 5, 6914–6918 (2012)

    Article  CAS  Google Scholar 

  19. T. Kumpika, W. Thongsuwan, P. singjai. Surf. Interface Anal. 39, 58–63 (2007)

    Article  CAS  Google Scholar 

  20. T. Kumpika, W. Thongsuwan, P. Singjai, Thin Solid Films 516, 5640–5644 (2008)

    Article  CAS  Google Scholar 

  21. W. Thongsuwan, T. Kumpika, P. Singjai, Curr. Appl. Phys. 8, 563–568 (2008)

    Article  Google Scholar 

  22. W. Thongsuwan, T. Kumpika, P. Singjai, Curr. Appl. Phys. 11, 1237–1242 (2011)

    Article  Google Scholar 

  23. K. Inyawilert, A. Wisitsora-At, A. Tuantranont, P. Singjai, S. Phanichphant, C. Liewhiran, Chem. B 192, 745–754 (2014)

    CAS  Google Scholar 

  24. F. Aqra, A. Ayyad, Curr. Appl. Phys. 12, 31–35 (2012)

    Article  Google Scholar 

  25. J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Phys. Chem. Chem. Phys. 15, 10978–10988 (2013)

    Article  CAS  Google Scholar 

  26. Y. Zhu, Q. Ling, Y. Liu, H. Wang, Y. Zhu, Phys. Chem. Chem. Phys. 17, 933–940 (2015)

    Article  CAS  Google Scholar 

  27. Z. Li, S. Cong, Y. Xu, ACS Catal. 4, 3273–3280 (2014)

    Article  CAS  Google Scholar 

  28. M. Rezaee, S. Mohammad, M. Khoie, K.H. Liu, CrystEngComm 13, 5055–5061 (2011)

    Article  CAS  Google Scholar 

  29. N. Ghrairi, M. Bouaicha, Nanoscale Res. Lett. 7, 357–363 (2012)

    Article  Google Scholar 

  30. Z.R. Khan, M.S. Khan, M. Zulfequar, M.S. Khan, Mater. Sci. Appl. 2, 340–345 (2011)

    CAS  Google Scholar 

  31. Y. Keereeta, T. Thongtem, S. Thongtem, Appl. Surf. Sci. 351, 1075–1080 (2015)

    Article  CAS  Google Scholar 

  32. Y. Keereeta, S. Thongtem, T. Thongtem, Powder Technol. 284, 85–94 (2015)

    Article  CAS  Google Scholar 

  33. M.N. Ghazzal, R. Wojcieszak, G. Raj, E.M. Gaigneaux, Beilstein J. Nanotechnol. 5, 68–76 (2014)

    Article  Google Scholar 

  34. L. Li, J. Yan, T. Wang, Z.-J. Zhao, J. Zhang, J. Gong, N. Guan, Nat. Commun. 6, 5881–5891 (2015)

    Article  Google Scholar 

  35. S. Rtimi, J. Nesic, C. Pulgarin, R. Sanjines, M. Bensimon, J. Kiwi, Interface Focus 5, 1–12 (2016)

    Google Scholar 

  36. T.V. Larina, L.S. Dovlitova, V.V. Kaichev, V.V. Malakhov, T.S. Glazneva, E.A. Paukshtis, B.S. Bal’zhinimaev, RSC Adv. 5, 79898–79905 (2015)

    Article  CAS  Google Scholar 

  37. R. Gao, Z. Liang, J. Tian, Q. Zhang, L. Wang, G.Z. Cao, SC Adv. 3, 8537–8543 (2013)

    Google Scholar 

  38. G. Wang, X. Zhu, J. Yu, J. Power Sources 278, 344–351 (2015)

    Article  CAS  Google Scholar 

  39. Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, J. Appl. Phys. 103, 084304 (2008)

    Article  Google Scholar 

  40. F. Al-Juaid, A. Merazga, F. Abdel-Wahab, M. Al-Amoudi, World J. Condens. Matter Phys. 2, 192–196 (2012)

    Article  CAS  Google Scholar 

  41. O. Wiranwetchayan, W. Promnopas, K. Hongsith, S. Choopun, P. Singjai, S. Thongtem, Res. Chem. Intermed. 42, 3655–3672 (2016)

    Article  CAS  Google Scholar 

  42. M. Pan, N. Huang, X. Zhao, J. Fu, X. Zhong, J. Nanomater. 2013, 760685 (2013)

    Article  Google Scholar 

  43. R. Zhoua, Q. Zhang, E. Uchaker, L. Yang, N. Yin, Y. Che, M. Yin, G.Z. Cao, Electrochimica Acta 135, 284–292 (2014)

    Article  Google Scholar 

  44. J. Tian, L. Lv, X. Wang, C. Fei, X. Liu, Z. Zhao, Y. Wang, G.Z. Cao, J. Phys. Chem. C 118, 16611–16617 (2014)

    Article  CAS  Google Scholar 

  45. J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, G. Shao, Appl. Surf. Sci. 319, 75–82 (2014)

    Article  CAS  Google Scholar 

  46. K. Park, Q. Zhang, D. Myers, G.Z. Cao, ACS Appl. Mater. Interfaces 5, 1044–1052 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Thailand’s Office of the Higher Education Commission, Thailand Research Fund (TRF), and Chiang Mai University (CMU) for financial support through the co-Fund No. MRG5680025, including Thailand’s Office of the Higher Education Commission through the National Research University (NRU) Project for Chiang Mai University and the Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, through a general support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orawan Wiranwetchayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiranwetchayan, O., Promnopas, W., Choopun, S. et al. Preparation of TiO2 nanoparticles by sparking technique for enhancing photovoltaic performance of dye-sensitized solar cells. Res Chem Intermed 43, 4339–4352 (2017). https://doi.org/10.1007/s11164-017-2881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-2881-z

Keywords

Navigation