Skip to main content

Solvent, substituent, and dimerization effects on the ring-opening mechanisms of monosilacyclopropylidenoids: a theoretical study

Abstract

Density functional theory and ab initio computations elucidated the ring-opening of substituted (R = –CF3, –CN, –CH3, –H, –NH2, –OCH3, –OH, –SiH3) 1-bromo–1-lithiosilirane 1 and 2-bromo–2-lithiosilirane 2 to LiBr complexes of 2-silaallene and 1-silaallene, respectively. Formally, two competitive pathways can be considered. The ring-opening reaction can take place through a concerted manner via TS3. Alternatively, the reaction may proceed in a stepwise fashion with the intermediacy of a free silacyclopropylidene–LiBr complex 7. In both cases, the position of the substituents determines the kinetic of the reactions. The structures with an electron-donating group are generally unstable, whereas the silacyclopropylidenoids bearing electron-withdrawing substituents are particularly stable species. Here, we propose the ring-opening of 5ah to corresponding LiBr complexes of 2-silaallenes can proceed in both concerted and stepwise mechanism except for –H, –CH3, and –SiH3. The obtained activation energies for the ring-openings of 5ah to related 2-silaallenes are too high for a reaction at room temperature with up to 61.4 kcal/mol. In contrast, the activation energy barriers for the isomerization of 6ah to the LiBr complexes of 1-silaallenes was determined to be relatively low at the B3LYP/6-31+G(d,p), M06/6-31+G(d,p), and MP2/6-31+G(d,p) levels. Moreover, we have also investigated the solvent effect on the unsubstituted models using both implicit and explicit solvation models. The energy barriers of the solvated models are found to be slightly higher than the results of gas phase calculations. Additionally, the ring-opening of dimer 6 (6Dim) is also calculated for the ring-opening mechanism with the energy barrier of 3.7 kcal/mol at B3LYP/6-31+G(d,p) level of theory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    H. Gilman, D.J. Peterson, J. Am. Chem. Soc. 87, 2389 (1965)

    CAS  Article  Google Scholar 

  2. 2.

    N. Wiberg, W. Niedermayer, G. Fischer, H. Nöth, M. Suter, Eur. J. Inorg. Chem. 5, 1066 (2002)

    Article  Google Scholar 

  3. 3.

    M.J. Cowley, V. Huch, H.S. Rzepa, D. Scheschkewitz, Nat. Chem. 5, 876 (2013)

    CAS  Article  Google Scholar 

  4. 4.

    K. Tamao, A. Kawachi, Angew. Chem. Int. Ed. Engl. 34, 818 (1995)

    CAS  Article  Google Scholar 

  5. 5.

    M.E. Lee, H.M. Cho, Y.M. Lim, J.K. Choi, C.H. Park, S.E. Jeong, U. Lee, Chem. Eur. J. 10, 377 (2004)

    CAS  Article  Google Scholar 

  6. 6.

    M.T. Whited, Beilstein J. Org. Chem. 8, 1554 (2012)

    CAS  Article  Google Scholar 

  7. 7.

    H.M. Cho, K. Bok, S.H. Park, Y.M. Lim, M.E. Lee, M.G. Choi, K.M. Lee, Organometallics 31, 5227 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    R. Pietschnig, Chem. Commun. 2004, 546 (2004)

    Article  Google Scholar 

  9. 9.

    G. Molev, D.B. Zhivotovskii, M. Karni, B. Tumanskii, M. Botoshansky, Y. Apeloig, J. Am. Chem. Soc. 128, 2784 (2006)

    CAS  Article  Google Scholar 

  10. 10.

    H.M. Cho, Y.M. Lim, B.W. Lee, S.J. Park, M.E. Lee, J. Organomet. Chem. 696, 2665 (2011)

    CAS  Article  Google Scholar 

  11. 11.

    T. Clark, P. Schleyer, J. Organomet. Chem. 191, 347 (1980)

    CAS  Article  Google Scholar 

  12. 12.

    S. Feng, D. Feng, M. Li, Y. Bu, Chem. Phys. Lett. 339, 103 (2001)

    CAS  Article  Google Scholar 

  13. 13.

    M. Flock, C. Marschner, Chem. Eur. J. 11, 4635 (2005)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Qi, Z. Chen, P. Li, Comput. Theory Chem. 969, 61 (2012)

    Article  Google Scholar 

  15. 15.

    S.Y. Feng, D.C. Feng, M.J. Li, Int. J. Quant. Chem. 87, 360 (2002)

    CAS  Article  Google Scholar 

  16. 16.

    N. Sigal, Y. Apeloig, J. Organomet. Chem. 636, 148 (2001)

    CAS  Article  Google Scholar 

  17. 17.

    J. Escudie, H. Ranaivonjatovo, M. Bouslikhane, Y.E. Harouch, L. Baiget, G.C. Nemes, Russ. Chem. Bull. Int. Ed. 53, 1020 (2004)

    CAS  Article  Google Scholar 

  18. 18.

    M. Fedorynski, Chem. Rev. 103, 1099 (2003)

    CAS  Article  Google Scholar 

  19. 19.

    A. Azizoglu, R. Ozen, T. Hokelek, M. Balci, J. Org. Chem. 69, 1202 (2004)

    CAS  Article  Google Scholar 

  20. 20.

    A. Azizoglu, M. Balci, J.-L. Mieusset, U.H. Brinker, J. Org. Chem. 73, 8182 (2008)

    CAS  Article  Google Scholar 

  21. 21.

    B. Kilbas, A. Azizoglu, M. Balci, J. Org. Chem. 74, 7075 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    A.C. Voukides, K.J. Cahill, R.P. Johnson, J. Org. Chem. 78, 11815 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    A. Azizoglu, C.B. Yildiz, Organometallics 29, 6739 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    C.B. Yildiz, A. Azizoglu, Struct. Chem. 33, 1777 (2012)

    Article  Google Scholar 

  25. 25.

    A. Azizoglu, C.B. Yildiz, J. Organomet. Chem. 715, 19 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    E. Lee-Ruff, eds. In Methoden der OrganischenChemie de A. Meijere, Eds. (Thiemeg, New York, 1997) pp. 2388–2418

  27. 27.

    V. Capriati, S. Florio, Chem. Eur. J. 16, 4152 (2010)

    CAS  Article  Google Scholar 

  28. 28.

    W. Kirmse, N.G. Rondan, K.N. Houk, J. Am. Chem. Soc. 106, 7989 (1984)

    CAS  Article  Google Scholar 

  29. 29.

    H.F. Bettinger, P.R. Schreiner, P.V.R. Schleyer, H.F. Schaefer, J. Phys. Chem. 100, 16147 (1996)

    CAS  Article  Google Scholar 

  30. 30.

    M. Harmata, P. Zheng, P.R. Schreiner, A.N. Vázquez, Tetrahedron Lett. 48, 5919 (2007)

    CAS  Article  Google Scholar 

  31. 31.

    W.P. Oziminski, J.C. Dobrowolski, J. Phys. Org. Chem. 22, 769 (2009)

    CAS  Article  Google Scholar 

  32. 32.

    A. Mazurek, J.C. Dobrowolski, J. Org. Chem. (2012). doi:10.1021/jo202542e

    Google Scholar 

  33. 33.

    K. Heclik, B. Debska, J.C. Dobrowolski, RSC Adv. 4, 17337 (2014)

    CAS  Article  Google Scholar 

  34. 34.

    Gaussian 09, Revision A.02-SMP, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT (2009)

  35. 35.

    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    CAS  Article  Google Scholar 

  36. 36.

    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1998)

    Article  Google Scholar 

  37. 37.

    K. Fukui, Acc. Chem. Res. 14, 363 (1981)

    CAS  Article  Google Scholar 

  38. 38.

    C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 95, 5853 (1991)

    CAS  Article  Google Scholar 

  39. 39.

    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    CAS  Article  Google Scholar 

  40. 40.

    A.E. Reed, PvR Schleyer, J. Am. Chem. Soc. 112, 1434 (1990)

    CAS  Article  Google Scholar 

  41. 41.

    M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24, 669 (2003)

    CAS  Article  Google Scholar 

  42. 42.

    RII. Dennington, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, R. Gilliland, GaussView v.5.0.9 Visualizer and Builder

Download references

Acknowledgements

This work was supported by grants from the Scientific and Technical Research Council of Turkey (TUBITAK) (Grant No. TUBITAK TBAG–212T049) and Aksaray University coordinator ship of scientific research projects (Grant No. 2016-024).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cem B. Yildiz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 233 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yildiz, C.B., Sasi, O. & Azizoglu, A. Solvent, substituent, and dimerization effects on the ring-opening mechanisms of monosilacyclopropylidenoids: a theoretical study. Res Chem Intermed 43, 3711–3726 (2017). https://doi.org/10.1007/s11164-016-2836-9

Download citation

Keywords

  • Silaallene
  • Silylenoid
  • Substituent effects
  • Solvent effect
  • Reactive intermediate
  • Reaction mechanism