Skip to main content
Log in

Synthesis of nZVI@reduced graphene oxide: an efficient catalyst for degradation of 1,1,1-trichloroethane (TCA) in percarbonate system

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Graphene-oxide-supported nano zero-valent iron (nZVI) composite (nZVI–rGO) was synthesized and tested as an efficient percarbonate activator for degradation of 1,1,1-trichloroethane (TCA). Significant dispersion of nZVI on the surface of reduced graphene oxide (rGO) was observed, with good limitation of nanoparticle agglomeration and aggregation. Good TCA degradation efficiency of 90% was achieved in 2.5 h in presence of 0.8 g/l nZVI–rGO catalyst and 30 mM sodium percarbonate (SPC) oxidant; however, excessive catalyst or oxidant concentration reduced the degradation efficiency. Investigation of reactive oxygen species using radical probe compounds as well as radical scavengers confirmed presence of hydroxyl (OH·) and superoxide (\({\text{O}}_{2}^{\cdot - }\)) radicals that are responsible for the TCA degradation. The morphology and surface characteristics of the heterogeneous catalyst were analyzed by transmission electron microscopy and scanning electron microscopy. Brunauer–Emmett–Teller analysis revealed that the synthesized catalyst had large surface area and small particle size of 299.12 m2/g and 20.10 nm, respectively, compared with 5.33 m2/g and 1.12 µm for bare graphene oxide. X-ray diffraction analysis revealed good dispersion of nZVI on the surface of rGO. Fourier-transform infrared characteristic peaks confirmed strong attachment of Fe onto the rGO surface. Energy-dispersive spectroscopy analysis validated the stoichiometric composition of the prepared Fe/rGO material. In conclusion, use of nZVI–rGO-activated SPC could represent an alternative technique for remediation of TCA-contaminated groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Palau, P. Jamin, A. Badin, N. Vanhecke, B. Haerens, S. Brouyere, D. Hunkeler, Water Res. 92 (2016)

  2. ATDSR. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA (2006), http://www.atsdr.cdc.gov/ToxProfiles/tp70.pdf. Accessed 17 June 2016

  3. M.J. Moran, J.S. Zogorski, P.J. Squillace, Environ. Sci. Technol. 41, 74–81 (2007)

    Article  CAS  Google Scholar 

  4. M.H. Xu, X. Gu, S. Lu, Z. Qiu, Q. Sui, Ind. Eng. Chem. Res. 53, 1056–1063 (2014)

    Article  CAS  Google Scholar 

  5. B. Sun, B.M. Griffin, H.L. Ayala-del-Río, S.A. Hashsham, J.M. Tiedje, Science 298, 1023–1025 (2002)

    Article  CAS  Google Scholar 

  6. X. Gu, S. Lu, Z. Qiu, Q. Sui, C.J. Banks, T. Imai, K. Lin, Q. Luo, Chem. Eng. J. 215, 29–35 (2013)

    Article  Google Scholar 

  7. U.S. Environmental Protection Agency (USEPA), National Primary Drinking Water Regulations (2009), https://www.epa.gov/dwstandardsregulations. Accessed 17 June 2016

  8. M. Danish, X. Gu, S. Lu, X. Zhang, X. Fu, Y. Xue, Z. Miao, A. Ahmad, M. Naqvi, A.S. Qureshi, Water Air Soil Pollut. 227, 1–14 (2016)

    Article  CAS  Google Scholar 

  9. M. Danish, X. Gu, S. Lu, M. Naqvi, Environ. Sci. Pollut. Res. Int. 23, 13298–13307 (2016)

    Article  CAS  Google Scholar 

  10. I. Oller, S. Malato, J. Sánchez-Pérez, Sci. Total Environ. 409, 4141–4166 (2011)

    Article  CAS  Google Scholar 

  11. Y. Xue, X. Gu, S. Lu, Z. Miao, M.L. Brusseau, M. Xu, X. Fu, X. Zhang, Z. Qiu, Q. Sui, Chem. Eng. J. 302, 187–193 (2016)

    Article  CAS  Google Scholar 

  12. A. Ahmad, X. Gu, L. Li, S. Lv, Y. Xu, X. Guo, Environ. Sci. Pollut. Res. Int. 22, 17876–17885 (2015)

    Article  CAS  Google Scholar 

  13. N.H. Akyol, I. Yolcubal, Water Air Soil Pollut. 224, 1–19 (2013)

    Google Scholar 

  14. Z. Miao, X. Gu, S. Lu, M.L. Brusseau, X. Zhang, X. Fu, M. Danish, Z. Qiu, Q. Sui, Chem. Eng. J. 281, 286–294 (2015)

    Article  CAS  Google Scholar 

  15. R. Li, X. Jin, M. Megharaj, R. Naidu, Z. Chen, Chem. Eng. J. 264, 587–594 (2015)

    Article  CAS  Google Scholar 

  16. A.A. Burbano, D.D. Dionysiou, M.T. Suidan, T.L. Richardson, Water Res. 39, 107–118 (2005)

    Article  CAS  Google Scholar 

  17. C. Walling, Acc. Chem. Res. 8, 125–131 (1975)

    Article  CAS  Google Scholar 

  18. C.L. Yap, S. Gan, H.K. Ng, Chemosphere 83, 1414–1430 (2011)

    Article  CAS  Google Scholar 

  19. G.C. Yang, C.-Y. Liu, J. Hazard. Mater. 85, 317–331 (2001)

    Article  CAS  Google Scholar 

  20. M. Danish, X. Gu, S. Lu, M. Xu, X. Zhang, X. Fu, Y. Xue, Z. Miao, M. Naqvi, M. Nasir, Res. Chem. Intermed. 42, 6959–6973 (2016)

    Article  CAS  Google Scholar 

  21. A. Northup, D. Cassidy, J. Hazard. Mater. 152, 1164–1170 (2008)

    Article  CAS  Google Scholar 

  22. Y. Qian, X. Zhou, Y. Zhang, W. Zhang, J. Chen, Chemosphere 91, 717–723 (2013)

    Article  CAS  Google Scholar 

  23. A. Goi, M. Viisimaa, M. Trapido, R. Munte, Chemosphere 82, 1196–1201 (2011)

    Article  CAS  Google Scholar 

  24. M. Danish, X. Gu, S. Lu, M.L. Brusseau, A. Ahmad, M. Naqvi, U. Farooq, W.Q. Zaman, X. Fu, Z. Miao, Appl. Catal. A Gen. doi:10.1016/j.apcata.2016.11.001 (2016)

  25. X. Zang, X. Gu, S. Lu, Z. Qiu, Q. Sui, K. Lin, X. Du, Environ. Technol. 35, 791–798 (2014)

    Article  CAS  Google Scholar 

  26. F. Rivas, O. Gimeno, T. Borralho, M. Carbajo, J. Hazard. Mater. 179, 357–362 (2010)

    Article  CAS  Google Scholar 

  27. Z. Miao, X. Gu, S. Lu, M.L. Brusseau, N. Yan, Z. Qiu, Q. Sui, J. Hazard. Mater. 300, 530–537 (2015)

    Article  CAS  Google Scholar 

  28. Y.Q. Zhang, X.F. Xie, S.B. Huang, H.Y. Liang, J. Cent. South Univ. 21, 1441–1447 (2014)

    Article  CAS  Google Scholar 

  29. T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry, Environ. Sci. Technol. 4, 284–290 (2007)

    Article  Google Scholar 

  30. V.K. Gupta, N. Atar, M.L. Yola, Z. Üstündağ, L. Uzun, Water Res. 48, 210–217 (2014)

    Article  CAS  Google Scholar 

  31. N.M. Julkapli, S. Bagheri, Int. J. Hydrog. Energy 40, 948–979 (2015)

    Article  CAS  Google Scholar 

  32. Y.S. Jeong, J.B. Park, H.G. Jung, J. Kim, X. Luo, J. Lu, L. Curtiss, K. Amine, Y.K. Sun, B. Scrosati, Y.J. Lee, Nano Lett. 15, 4261–4268 (2015)

    Article  CAS  Google Scholar 

  33. J. Yan, W. Gao, M. Dong, L. Han, L. Qian, C.P. Nathanail, M. Chen, Chem. Eng. J. 295, 309–316 (2016)

    Article  CAS  Google Scholar 

  34. S. Bae, W. Lee, Appl. Catal. B Environ. 96, 10–17 (2010)

    Article  CAS  Google Scholar 

  35. X. Gu, S. Lu, X. Guo, J. Sima, Z. Qiu, Q. Sui, RSC Adv. 5, 60849–60856 (2015)

    Article  CAS  Google Scholar 

  36. W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  CAS  Google Scholar 

  37. C. Santhosh, P. Kollu, S. Doshi, M. Sharma, D. Bahadur, M.T. Vanchinathan, P. Saravanan, B.-S. Kim, A.N. Grace, RSC Adv. 4, 28300–28308 (2014)

    Article  CAS  Google Scholar 

  38. X.Q. Li, D.W. Elliott, W.X. Zhang, Crit. Rev. Solid State Mater. Sci. 31, 111–122 (2006)

    Article  CAS  Google Scholar 

  39. M. Deosarkar, S. Pawar, B. Bhanvase, Chem. Eng. Process 83, 49–55 (2014)

    Article  CAS  Google Scholar 

  40. R. Xu, H. Bi, G. He, J. Zhu, H. Chen, Mater. Res. Bull. 57, 190–196 (2014)

    Article  CAS  Google Scholar 

  41. N. Puvvada, D. Mandal, P.K. Panigrahi, A. Pathak, Toxicol. Res. 1, 196–200 (2012)

    Article  CAS  Google Scholar 

  42. M. Danish, X. Gu, S. Lu, A. Ahmad, M. Naqvi, U. Farooq, X. Zhang, X. Fu, Z. Miao, Y. Xue, Chem. Eng. J. 308, 396–407 (2017)

    Article  CAS  Google Scholar 

  43. D.H. Lee, G.S. Cho, H.M. Lim, D.S. Kim, C. Kim, S.H. Lee, J. Ceram. Process Res. 14, 274–278 (2013)

    Google Scholar 

  44. A. Ahmad, X. Gu, L. Li, S. Lu, Y. Xu, X. Guo, Water Air Soil Pollut. 226, 369 (2015)

  45. J.J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Environ. Sci. Technol. 36, 1–84 (2006)

    Article  CAS  Google Scholar 

  46. J.J. Pignatello, Environ. Sci. Technol. 26, 944–951 (1992)

    Article  CAS  Google Scholar 

  47. M.A.J. Khan, R.J. Watts, Water Air Soil Pollut. 88, 247–260 (1996)

    Article  Google Scholar 

  48. K.H. Wang, Y.H. Hsieh, P.W. Chao, C.Y. Cgang, J. Hazard. Mater. 95, 161–174 (2002)

    Article  CAS  Google Scholar 

  49. W. Zhang, N. Jia, X. Han, Z. Qiu, S. Lv, K. Lin, W. Ying, Environ. Technol. 37, 2088–2098 (2016)

    Article  CAS  Google Scholar 

  50. Y. Cho, S.-I. Choi, Chemosphere 81, 940–945 (2010)

    Article  CAS  Google Scholar 

  51. L. Yang, C.S. Chen, Y.J. Tu, Y.H. Huang, H. Zhang, Environ. Sci. Technol. 49, 6838–6845 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants from the National Natural Science Foundation of China (nos. 41373094 and 51208199), China Postdoctoral Science Foundation (2015M570341), and the Fundamental Research Funds for the Central Universities (22A201514057). One of the authors would like to thank KKS—the Knowledge Foundation of Sweden and industrial partners (Mälarenergi and Eskilstuna Energi och Miljö) for their funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, U., Danish, M., Lu, S. et al. Synthesis of nZVI@reduced graphene oxide: an efficient catalyst for degradation of 1,1,1-trichloroethane (TCA) in percarbonate system. Res Chem Intermed 43, 3219–3236 (2017). https://doi.org/10.1007/s11164-016-2821-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2821-3

Keywords

Navigation