Skip to main content
Log in

Vanadium separation with activated carbon and iron/activated carbon nanocomposites in fixed bed column: experimental and modelling study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, iron nanoparticles were impregnated onto a commercial activated carbon surface to produce a novel adsorbent called iron-activated carbon nanocomposite (I-AC). Commercial activated carbon (CAC) and I-AC were used for vanadium separation in a fixed-bed column. The effects of various operating parameters such as inlet vanadium ion concentration, adsorbent dose and volumetric flow rate on vanadium separation performance of CAC were investigated. The performance of both adsorbents was compared in three adsorption/desorption cycles. The experimental breakthrough curves of vanadium ions in the fixed-bed column were modeled using the film-pore-surface diffusion model (FPSDM). The four mass transfer parameters characterizing this model, namely the external mass-transfer coefficient (k f ), pore and surface diffusion coefficients (D p and D s ), and axial dispersion coefficient (D L ) were evaluated through the model. Modelling and experimental results showed that the I-AC nanocomposite has a better performance for vanadium separation in comparison to AC. Sensitivity analysis on the FPSDM showed that the pore and surface diffusion, external mass transfer and axial dispersion play a significant role in vanadium separation using the I-AC. On the other hand, surface diffusion resulted to be relatively less important when CAC was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.S.Y. Choong, T.N. Wong, T.G. Chuah, A. Idris, J. Coll. Interf. Sci. 301, 436–440 (2006)

    Article  CAS  Google Scholar 

  2. H. Chi-Wai, C. Buning, G. McKay, Langmuir 19, 4188–4196 (2003)

    Article  Google Scholar 

  3. L. Lv, Y. Zhang, K. Wang, A.K. Ray, X.S. Zhao, J. Coll. Interf. Sci. 325, 57–63 (2008)

    Article  CAS  Google Scholar 

  4. H. Marsh, F. Rodriguez-Reinoso, Activated carbon (Elsevier, New York, 2006)

    Google Scholar 

  5. H. Mao, R. Huang, Z. Hashisho, S. Wang, H. Chen, H. Wang, D. Zhou, Res. Chem. Intermed. 42, 3359–3371 (2016)

    Article  CAS  Google Scholar 

  6. R. Chand-Bansal, M. Goyal, Activated carbon adsorption (Taylor & Francis, Boca Raton, 2005)

    Book  Google Scholar 

  7. A.M. Cooper, K.D. Hristovski, T. Möller, P. Westerhoff, P. Sylvester, J. Hazard. Mater. 183, 381–388 (2010)

    Article  CAS  Google Scholar 

  8. T. Depci, Chem. Eng. J. 181–182, 467–478 (2012)

    Article  Google Scholar 

  9. J.H. Xu, N. Gao, Y. Deng, S. Xia, Chem. Eng. J. 222, 520–526 (2013)

    Article  CAS  Google Scholar 

  10. M. Ghaedi, M. Roosta, A.M. Ghaedi, A. Ostovan, I. Tyagi, S. Agarwal, V.K. Gupta, Res. Chem. Intermed. (2015). doi:10.1007/s11164-015-2285-x

    Google Scholar 

  11. Q. He, J. Dai, L. Zhu, K. Xiao, Y. Yin, J. Alloy. Compd. 687, 326–333 (2016)

    Article  CAS  Google Scholar 

  12. A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, E. Alipanahpour Dil, Ultrason. Sonochem. 34, 1–12 (2017)

    Article  CAS  Google Scholar 

  13. H.S. Park, J. Reddy Koduru, K.H. Choo, B. Lee, J. Hazard. Mater. 286, 315–324 (2015)

    Article  CAS  Google Scholar 

  14. H. Wyers, Br. J. Ind. Med. 31, 177–182 (1946)

    Google Scholar 

  15. B. Patel, G.E. Henderson, S.J. Haswell, R. Grzeskowiak, Analyst 115, 1063–1066 (1990)

    Article  CAS  Google Scholar 

  16. A.P. Rodríguez, J.A.H. Viezcas, J.R.P. Videa, G.L.G. Torresdey, O.P. Pérez, F.R.R. Velázquez, Microchem. J. 118, 1–11 (2015)

    Article  Google Scholar 

  17. A. Alibrahim, H. Shlewit, S. Alike, Chem. Eng. J. 52(1), 29–33 (2008)

    Google Scholar 

  18. M. Nabavinia, M. Soleimani, A. Kargari, Int. J. Chem. Environ Eng. 3, 149–152 (2012)

    CAS  Google Scholar 

  19. H. Sharififard, F. Pepe, M. Soleimani, P. Aprea, D. Caputo, RSC Adv. 6, 42845–42853 (2016)

    Article  CAS  Google Scholar 

  20. H. Sharififard, M. Soleimani, RSC Adv. 5, 80650–80660 (2015)

    Article  CAS  Google Scholar 

  21. B. Kakavandi, R. Rezaie Kalantary, A. Jonidi Jafari, S. Nasseri, A. Ameri, A. Esrafili, A. Azari, Clean Soil Air Water 43, 1157–1166 (2015)

    Article  CAS  Google Scholar 

  22. F.B. Aarden, Adsorption onto heterogeneous porous materials: equilibria and kinetics. PhD Dissertation (Technische Universiteit, Eindhoven, 2001)

  23. S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous materials and powders: surface area, pore size and density (Springer, Dordrecht, 2004)

    Book  Google Scholar 

  24. J.A. Arcibar-Orozco, J. Rene Rangel-Mendez, T.J. Bandosz, J. Hazard. Mater. 246–247, 300–309 (2013)

    Article  Google Scholar 

  25. S. Hydari, H. Sharififard, M. Nabavinia, M.R. Parvizi, Chem. Eng. J. 193–194, 276–282 (2012)

    Article  Google Scholar 

  26. Z. Al-Qodah, R. Shawabkah, Braz. J. Chem. Eng. 26, 127–136 (2009)

    Article  CAS  Google Scholar 

  27. Y. Li, C. Zhu, T. Lu, Z. Guo, D. Zhang, J. Ma, S. Zhu, Carbon 52, 565–573 (2013)

    Article  Google Scholar 

  28. P. Cambier, Clay Miner. 21, 191–200 (1986)

    Article  CAS  Google Scholar 

  29. C. Namasivayam, D. Sangeetha, Adsorption 12, 103–117 (2006)

    Article  CAS  Google Scholar 

  30. K. Prathap, C. Namasivayam, Environ. Chem. Lett. 8, 363–371 (2010)

    Article  CAS  Google Scholar 

  31. Q. Hu, H. Paudyal, J. Zhao, F. Huo, K. Inoue, H. Liu, Chem. Eng. J. 248, 79–88 (2014)

    Article  CAS  Google Scholar 

  32. L. Zhang, X. Liu, W. Xiab, W. Zhang, Int. J. Biol. Macromol. 64, 155–161 (2014)

    Article  CAS  Google Scholar 

  33. T. Wang, Z. Cheng, B. Wang, W. Ma, Chem. Eng. J. 181–182, 182–188 (2012)

    Article  Google Scholar 

  34. D.M. Ruthven, Principles of adsorption and adsorption processes (Wiley, New York, 1984)

    Google Scholar 

  35. M. Suzuki, Adsorption engineering (Kodansha, Tokyo, 1990)

    Google Scholar 

  36. J. Sotelo, L.G. Ovejero, A. Rodríguez, S. Álvarez, J. Galán, J. García, Chem. Eng. J. 240, 443–453 (2014)

    Article  CAS  Google Scholar 

  37. M. Songolzadeh, M. Soleimani, M. Takht, Ravanchi. J. Nat. Gas Sci. Eng. 27, 831–841 (2015)

    Article  CAS  Google Scholar 

  38. S. Afroze, T.K. Sen, H.M. Ang, Res. Chem. Intermed. 42, 2343–2346 (2016)

    Article  CAS  Google Scholar 

  39. V. Inglezakis, S. Poulopoulos, Adsorption, ion exchange and catalyst: design of operations and environmental application (Elsevier, Amsterdam, 2006)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge with a great degree of appreciation that this project was financially supported by a research grant (research project No. 61736) from the Iran Nano Technology Initiative Council, Iran. The authors sincerely thank Professors Paolo Aprea and Bruno de Gennaro for providing and their assistance in column experiments and analyzing the samples by ICP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansooreh Soleimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharififard, H., Soleimani, M. & Pepe, F. Vanadium separation with activated carbon and iron/activated carbon nanocomposites in fixed bed column: experimental and modelling study. Res Chem Intermed 43, 2253–2272 (2017). https://doi.org/10.1007/s11164-016-2760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2760-z

Keywords

Navigation