Skip to main content

Molecular diversity in cyclization of Ugi-products leading to the synthesis of 2,5-diketopiperazines: computational study

Abstract

Ugi-adducts were obtained via a one-pot four-component reaction of divergent aldehydes, amines, aroylacrylic acids and isocyanide in methanol. These products were subjected to intramolecular Michael addition in the presence of K2CO3 in DMF at room temperature to afford a single product. Literally, the formation of two heterocyclic systems, 6-membered diones or 7-membered diones are possible, which could not be identified by conventional spectroscopic methods. The X-ray crystallographical data was obtained for one selected product, which indicated preferential formation of the corresponding 6-membered dione. In order to establish the generality of this mode of cyclization, the quantum chemistry calculations were performed. The obtained results confirmed the favorable formation of 6-membered diones in the gas and also several solution phases. All the products were screened for their antibacterial and antifungal activities.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Scheme 4
Fig. 4
Fig. 5

References

  1. P.S. Baran, C.A. Guerrero, E.J. Corey, J. Am. Chem. Soc. 125, 5628 (2003)

    CAS  Article  Google Scholar 

  2. A.C. Durow, G.C. Long, S.J. O’Connell, C.L. Willis, Org. Lett. 8, 5401 (2006)

    CAS  Article  Google Scholar 

  3. N. Shimazaki, I. Shima, M. Okamoto, K. Yoshida, K. Hemmi, M. Hashimoto, Lipids 26, 1175 (1991)

    CAS  Article  Google Scholar 

  4. K. Matsunaga, Y. Shizuri, S. Yamamura, K. Kawai, H. Furukawa, Tetrahedron Lett. 32, 6883 (1991)

    CAS  Article  Google Scholar 

  5. P.G. Sammes, Naturally occurring 2,5-dioxopiperazines and relatedcompounds, in Fortschritte der Chemie Organischer Naturstoffe, vol. 51, ed. by W. Herz, H. Grisebach, G.W. Kirby (Springer, Vienna, 1975)

    Google Scholar 

  6. D.T. Witiak, Y. Wei, Prog. Drug Res. 35, 249 (1990)

    CAS  Google Scholar 

  7. J.C. Dinsmore, D.C. Beshore, Tetrahedron 58, 3297 (2002)

    CAS  Article  Google Scholar 

  8. P.M. Fischer, J. Pept. Sci. 9, 9 (2003)

    CAS  Article  Google Scholar 

  9. J.C. O’Neill, H.E. Blackwell, Comb. Chem. High Throughput Screen. 10, 857 (2007)

    Article  Google Scholar 

  10. M.B. Martins, I. Carvalho, Tetrahedron 63, 9923 (2007)

    CAS  Article  Google Scholar 

  11. P.J. Milne, G. Kilian, The properties, formation, and biological activity of 2,5-diketopiperazines, in Comprehensive Natural Products II: Chemistry and Biology, vol. 5, ed. by L. Mander, H.W. Liu (Elsevier, Amsterdam, 2010), p. 657

    Chapter  Google Scholar 

  12. A.D. Borthwick, Chem. Rev. 112, 3641 (2012)

    CAS  Article  Google Scholar 

  13. J. Zhu, H. Bienaymé, Multicomponent Reactions (Wiley-VCH, Weinheim, 2005)

    Book  Google Scholar 

  14. A. Dömling, Y. Huang, Synthesis 17, 2859 (2010)

    Article  Google Scholar 

  15. A. Dömling, W. Wang, K. Wang, Chem. Rev. 112, 3083 (2012)

    Article  Google Scholar 

  16. I. Ugi, R. Meyr, U. Fetzer, C. Steinbrückner, Angew. Chem. 71, 386 (1959)

    Google Scholar 

  17. I. Ugi, C. Steinbrückner, Angew. Chem. 72, 267 (1960)

    CAS  Article  Google Scholar 

  18. S. Santra, P.R. Andreana, Angew. Chem. Int. Ed. 50, 9418 (2011)

    CAS  Article  Google Scholar 

  19. R.A. De Silva, S. Santra, P.R. Andreana, Org. Lett. 10, 4541 (2008)

    CAS  Article  Google Scholar 

  20. M. Krasavin, V. Parchinsky, Tetrahedron Lett. 51, 5657 (2010)

    CAS  Article  Google Scholar 

  21. D. Lee, J.K. Sello, S.L. Schreiber, Org. Lett. 2, 709 (2000)

    CAS  Article  Google Scholar 

  22. J.K. Sello, P.R. Andreana, D. Lee, S.L. Schreiber, Org. Lett. 5, 4125 (2003)

    CAS  Article  Google Scholar 

  23. A. Ilyin, V. Kysil, M. Krasavin, I. Kurashvili, A.V. Ivachtchenko, J. Org. Chem. 71, 9544 (2006)

    CAS  Article  Google Scholar 

  24. F. Medda, G. Martinez-Ariza, Ch. Hulme, Tetrahedron Lett. 56, 5295 (2015)

    CAS  Article  Google Scholar 

  25. M. Jida, D. Tourwé, S. Ballet, RSC Adv. 4, 38159 (2014)

    CAS  Article  Google Scholar 

  26. P. Purohit, A.K. Pandey, B. Kumar, P.M.S. Chauhan, RSC Adv. 6, 21165 (2016)

    CAS  Article  Google Scholar 

  27. M. Mahdavi, R. Hassanzadeh-Soureshjan, M. Saeedi, A. Ariafard, R. BabaAhmadi, P. Rashidi Ranjbar, A. Shafiee, RSC Adv. 5, 101353 (2015)

    CAS  Article  Google Scholar 

  28. D. Yugandhar, S. Kuriakose, J.B. Nanubolu, A.K. Srivastava, Org. Lett. 18, 1040 (2016)

    CAS  Article  Google Scholar 

  29. L. Zhang, F. Zhao, M. Zheng, Y. Zhai, H. Liu, Chem. Commun. 49, 2894 (2013)

    CAS  Article  Google Scholar 

  30. A. Kumar, D.D. Vachhani, S.G. Modha, S.K. Sharma, V.S. Parmar, E.V. Van der Eycken, Eur. J. Org. Chem. 12, 2288 (2013)

    Article  Google Scholar 

  31. E. Ghabraie, S. Balalaie, S. Mehrparvar, F. Rominger, J. Org. Chem. 79(17), 7926 (2014)

    CAS  Article  Google Scholar 

  32. A.S.A. Youssef, M.I. Marzouk, H.M. Madkour, A.M.A. El-Soll, M.A. El-Hashash, Can. J. Chem. 83, 251 (2005)

    CAS  Article  Google Scholar 

  33. Z. Juranic, L.J. Stevovic, B. Drakulic, I. Juranic, J. Serb. Chem. 64, 505 (1999)

    CAS  Google Scholar 

  34. A. Hartung, F. Seufert, C. Berges, V.H. Gessner, U. Holzgrabe, Molecules 17, 14685 (2012)

    CAS  Article  Google Scholar 

  35. S. Santra, P.R. Andreana, Org. Lett. 9, 5035 (2007)

    CAS  Article  Google Scholar 

  36. M.M. Heravi, T. Alishiri, Adv. Heterocycl. Chem. 113, 1 (2014)

    CAS  Article  Google Scholar 

  37. M.M. Heravi, B. Talaei, Adv. Heterocycl. Chem. 113, 143 (2014)

    CAS  Article  Google Scholar 

  38. M.M. Heravi, V. Zadsirjan, Adv. Heterocycl. Chem. 117, 261 (2015)

    Article  Google Scholar 

  39. M.M. Heravi, S. Khaghaninejad, M. Mostofi, Adv. Heterocycl. Chem. 112, 1 (2015)

    Article  Google Scholar 

  40. M.M. Heravi, S. Khaghaninejad, N. Nazari, Adv. Heterocycl. Chem. 112, 183 (2015)

    Article  Google Scholar 

  41. S. Khaghaninejad, M.M. Heravi, Adv. Heterocycl. Chem. 111, 95 (2014)

    CAS  Article  Google Scholar 

  42. B. Soleymanifard, M.M. Heravi, M. Shiri, M.A. Zolfigol, M. Rafiee, H.G. Kruger, T. Naicker, F. Rasekhmanesh, Tetrahedron Lett. 53, 3546 (2012)

    CAS  Article  Google Scholar 

  43. M. Shiri, Z. Bozorgpour-Savadjani, J. Iran. Chem. Soc. 12, 389 (2015)

    CAS  Article  Google Scholar 

  44. S. Sadjadi, M.M. Heravi, Tetrahedron 67, 2707 (2011)

    CAS  Article  Google Scholar 

  45. M. Shiri, Chem. Rev. 112, 3508 (2012)

    CAS  Article  Google Scholar 

  46. M. Shiri, B. Farajpour, Z. Bozorgpour-Savadjani, S.A. Shintre, N.A. Koorbanally, H.G. Kruger, B. Notash, Tetrahedron 71, 5531 (2015)

    CAS  Article  Google Scholar 

  47. T. Hosseinnejad, M. Dinyari, Comput. Theor. Chem. 1071, 53 (2015)

    CAS  Article  Google Scholar 

  48. T. Hosseinnejad, B. Fattahi, M.M. Heravi, J. Mol. Model. 21, 264 (2015)

    Article  Google Scholar 

  49. V. Zadsirjan, M.M. Heravi, M. Tajbakhsh, H.A. Oskooie, M. Shiri, T. Hosseinnejad, Res. Chem. Intermed. 42, 1 (2016)

    Article  Google Scholar 

  50. T. Hosseinnejad, Phys. Chem. Res. 1, 175 (2013)

    CAS  Google Scholar 

  51. S. Khaghaninejad, M.M. Heravi, T. Hosseinnejad, H.A. Oskooie, M. Bakavoli, Res. Chem. Intermed. 42, 1593 (2016)

    CAS  Article  Google Scholar 

  52. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    CAS  Article  Google Scholar 

  53. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990)

    Google Scholar 

  54. R.F.W. Bader, H. Essén, J. Chem. Phys. 80, 1943 (1983)

    Article  Google Scholar 

  55. V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995 (1998)

    CAS  Article  Google Scholar 

  56. D. Papa, E. Schwenk, F. Villani, E. Klingsberg, J. Am. Chem. Soc. 70, 3356 (1948)

    CAS  Article  Google Scholar 

  57. A.D. Becke, J. Chem. Phys. 98, 2 (1993)

    Google Scholar 

  58. Y. Zhao, D.G. Truhlar, J. Chem. Theor. Comput. 4, 11 (2008)

    Article  Google Scholar 

  59. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    CAS  Article  Google Scholar 

  60. R.F.W. Bader, AIM2000 Program, Ver 2.0 (McMaster University, Hamilton, 2000)

    Google Scholar 

  61. R.G. Bone, R.F. Bader, J. Chem. Phys. 100, 10892 (1996)

    CAS  Article  Google Scholar 

  62. M. Bobrov, G. Popova, V. Tsirelson, Russ. J. Chem. Phys. 80, 584 (2006)

    CAS  Article  Google Scholar 

  63. D. Cremer, E. Kraka, Croat. Chem. Acta 57, 1259 (1984)

    Google Scholar 

  64. E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 117, 5529 (2002)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Alzahra University and the Iran National Science Foundation (INSF) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morteza Shiri or Majid M. Heravi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zadsirjan, V., Shiri, M., Heravi, M.M. et al. Molecular diversity in cyclization of Ugi-products leading to the synthesis of 2,5-diketopiperazines: computational study. Res Chem Intermed 43, 2119–2142 (2017). https://doi.org/10.1007/s11164-016-2750-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2750-1

Keywords

  • Ugi reaction
  • Aroylacrylic acids
  • Base catalysis
  • Intramolecular Michael addition
  • 2,5-Diketopiperazines
  • Molecular diversity
  • Density functional theory
  • Quantum theory of atoms in molecules
  • Polarized continuum model
  • Antibacterial and antifungal activities