Skip to main content
Log in

Direct growth of bundle-like cobalt selenide nanotube arrays on Ni foam as binder-free electrode for high-performance supercapacitors

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Freestanding bundle-like Co0.85Se nanotube arrays on nickle foam were prepared through a facile ion-exchange reaction and directly used as electrodes for supercapacitors. The morphology and structure of the obtained Co0.85Se nanotube arrays were studied by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area electron diffraction (SAED). The electrochemical properties of the obtained Co0.85Se electrodes were studied by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) analysis, and electrochemical impedance spectroscopy (EIS) in a three-electrode system. The Co0.85Se nanotube array/Ni foam electrode exhibited remarkable pseudocapacitive performance with high specific capacitance (1394 F g−1 at 4 A g−1) as well as good cycling performance and rate capability. The good electrochemical properties were due to the hollow nanostructure of the bundle-like Co0.85Se nanotube arrays and the three-dimensional (3D) conductive Ni foam, which can increase the contact between electrode and electrolyte and improve the conductivity of the whole electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Q. Lu, J.G. Chen, J.Q. Xiao, Angew. Chem. Int. Ed. 52, 1882 (2013)

    Article  CAS  Google Scholar 

  2. C. Laurence, P.M. Rosa, J. Am. Chem. Soc. 137, 3140 (2015)

    Article  Google Scholar 

  3. H. Zheng, D.Y. Park, M.S. Kim, Res. Chem. Intermed. 40, 2501 (2014)

    Article  CAS  Google Scholar 

  4. J. Yan, Q. Wang, T. Wei, Z.J. Fan, Adv. Energy Mater. 4, 1300816 (2014)

    Article  Google Scholar 

  5. H. Choi, H. Yoon, Nanomaterials 5, 906 (2015)

    Article  CAS  Google Scholar 

  6. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  CAS  Google Scholar 

  7. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22, E28 (2010)

    Article  CAS  Google Scholar 

  8. H.L. An, Y.J. Lee, H.J. Ahn, Res. Chem. Intermed. 41, 4785 (2015)

    Article  CAS  Google Scholar 

  9. G.S. Gund, D.P. Dubal, S.S. Shinde, C.D. Lokhande, Ceram. Int. 39, 7255 (2013)

    Article  CAS  Google Scholar 

  10. K.Y. Zhou, J.C. Liang, J.A. Liu, P. Sun, J.G. Bu, W.X. Zhang, G.Y. Chen, RSC Adv. 6, 15832 (2016)

    Google Scholar 

  11. D.P. Dubal, S.V. Patil, G.S. Gund, C.D. Lokhande, J. Alloys Compd. 552, 240 (2013)

    Article  CAS  Google Scholar 

  12. M. Kundu, L. Liu, Mater. Lett. 144, 114 (2015)

    Article  CAS  Google Scholar 

  13. N. Cheng, Q. Liu, J. Tian, X. Sun, Y. He, S. Zhai, A.M. Asiri, Int. J. Hydrogen Energy 40, 9866 (2015)

    Article  CAS  Google Scholar 

  14. K. Krishnamoorthy, G.K. Veerasubramani, P. Pazhamalai, S.J. Kim, Electrochim. Acta 190, 305 (2016)

    Article  CAS  Google Scholar 

  15. H.C. Chen, J.J. Jiang, L. Zhang, D.D. Xia, Y.D. Zhao, D.Q. Guo, T. Qi, H.Z. Wan, J. Power Sources 254, 249 (2014)

    Article  CAS  Google Scholar 

  16. X.X. Liu, C.D. Shi, C.W. Zhai, ACS. Appl. Mater. Interfaces 8, 4585 (2016)

    Article  CAS  Google Scholar 

  17. S.K. Chang, Z. Zainal, K.B. Tan, N.A. Yusof, W.M.D.W. Yusoff, S.R.S. Prabaharan, Ceram. Int. 41, 1 (2015)

    Article  CAS  Google Scholar 

  18. C.C. Liu, J.M. Song, J.F. Zhao, H.J. Li, H.S. Qian, H.L. Niu, C.J. Mao, S.Y. Zhang, Y.H. Shen, Appl. Catal. B Environ. 119–120, 139 (2012)

    Article  Google Scholar 

  19. T.T. Liu, Q. Liu, A.M. Asiri, Y.L. Luo, X.P. Sun, Chem. Commun. 51, 16683 (2015)

    Article  CAS  Google Scholar 

  20. Q.S. Jiang, G. Hu, Mater. Lett. 153, 114 (2015)

    Article  CAS  Google Scholar 

  21. A. Banerjee, S. Bhatnagar, K.K. Upadhyay, P. Yadav, S. Ogale, ACS Appl. Mater. Interfaces 6, 18844 (2014)

    Article  CAS  Google Scholar 

  22. Z. Wang, Q. Sha, F. Zhang, J. Pu, W. Zhang, CrystEngComm 15, 5928 (2013)

    Article  CAS  Google Scholar 

  23. H. Peng, G. Ma, K. Sun, Z. Zhang, J. Li, X. Zhou, Z. Lei, J. Power Sources 297, 351 (2015)

    Article  CAS  Google Scholar 

  24. C. Gong, M.L. Huang, P. Zhou, Z.X. Sun, L. Fan, J.M. Lin, J.H. Wu, Appl. Surf. Sci. 362, 469 (2016)

    Article  CAS  Google Scholar 

  25. J. Pu, Z.H. Wang, K.L. Wu, N. Yu, E.H. Sheng, Phys. Chem. Chem. Phys. 16, 785 (2014)

    Article  CAS  Google Scholar 

  26. F. Cao, G.X. Pan, X.H. Xia, P.S. Tang, H.F. Chen, J. Power Sources 264, 161 (2014)

    Article  CAS  Google Scholar 

  27. W.S. Wang, M. Dahl, Y.D. Yin, Chem. Mater. 25, 1179 (2013)

    Article  CAS  Google Scholar 

  28. J. Jiang, J.P. Liu, X.T. Huang, Y.Y. Li, R.M. Ding, X.X. Ji, Y.Y. Hu, Q.B. Chi, Z.H. Zhu, Cryst. Growth Des. 10, 70 (2010)

    Article  CAS  Google Scholar 

  29. X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, RSC Adv. 2, 1835 (2012)

    Article  CAS  Google Scholar 

  30. M.J. Zhi, A. Manivannan, F.K. Meng, N.Q. Wu, J. Power Sources 208, 345 (2012)

    Article  CAS  Google Scholar 

  31. H. Peng, G. Ma, K. Sun, Z. Zhang, J. Li, X. Zhou, Z. Lei, J. Power Sources 297, 351 (2015)

    Article  CAS  Google Scholar 

  32. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 21, 2366 (2011)

    Article  CAS  Google Scholar 

  33. T.Y. Wei, C.H. Chen, K.H. Chang, S.Y. Lu, C.C. Hu, Chem. Mater. 21, 3228 (2009)

    Article  CAS  Google Scholar 

  34. S.K. Meher, G.R. Rao, J. Power Sources 215, 317 (2012)

    Article  CAS  Google Scholar 

  35. M. Kundu, L.F. Liu, J. Power Sources 243, 676 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Science Foundation of Liaoning Province (no. 20101010) and the Fundamental Research Funds for the Central Universities of China (no. DUT12LK04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Yi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Liang, JC., Chen, GY. et al. Direct growth of bundle-like cobalt selenide nanotube arrays on Ni foam as binder-free electrode for high-performance supercapacitors. Res Chem Intermed 43, 1969–1978 (2017). https://doi.org/10.1007/s11164-016-2742-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2742-1

Keywords

Navigation