Skip to main content
Log in

Optimization of reaction parameters for the sonophotocatalytic degradation of hydroquinone

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the present work, the degradation of hydroquinone in synthetic wastewater under sonocatalytic, photocatalytic, and sonophotocatalytic conditions was investigated. The degradation of hydroquinone was investigated in terms of reduction in COD, and the effect of operational parameters including temperature, aeration, frequency, initial hydroquinone concentration, pH, and the TiO2 dose on the sonophotocatalytic process was examined. We focused on items such as the model formation of H2O2 using the sonocatalytic process which was extracted to systemize the operational process and enhance the degradation of hydroquinone. The role and amount of various sizes of the produced bubbles and synergy effect can be detected by our strategy and the integrated system created by the hybrid advanced oxidation process. The degradation values achieved for sonocatalytic, photocatalytic and sonophotocatalytic conditions were approximately 22.3, 76.3, and 100 %, respectively. We found that the maximum hydroquinone degradation in the sonophotocatalysis process was achieved when at a temperature of 25 °C, an aeration of 2 cm3/s, a frequency of 20, 40 and 100 kHZ, a hydroquinone concentration of 100 mg/L, a pH of 7, a TiO2 dose of 20 g/m2, and a fixed radiation intensity of 22.5 µw/cm2. Therefore, the sonophotocatalysis process was selected as the optimal process due to a synergy effect equal to 63.5 %. The highest concentration of H2O2 was observed at the time of the 12th pass equal to 0.136 g/L. The size of the bubbles and the cavitation hole had a significant effect on the H2O2 formation efficiency. The results of this study showed that the sonophotocatalytic hybrid system was able to efficiently degrade hydroquinone compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Li, L. Fan, M. Sun, H. Qiu, X. Li, H. Duan, C.h. Luo, Int. J. Biol. Macromol. 58, 169–175 (2013)

    Article  CAS  Google Scholar 

  2. F. Derikvand, F. Bigi, R. Maggi, P.C. Giancarlo, G. Sartori, Sep. Purif. Technol. 133, 99–103 (2010)

    Google Scholar 

  3. D. Margeta, I. Grčić, S. Papić, K. Sertić-Bionda, L. Foglar, Enviro. Tech. 37, 3 (2016)

    Google Scholar 

  4. M.S. Lucas, J.A. Peres, Water. Air. Soil. Poll. 226 (2015). doi:10.1007/s11270-015-2534-z

  5. L. Zhao, W. Ma, J. Ma, G. Wen, Q. Liu, Ultrason. Sonochem. 22, 198–204 (2015)

    Article  CAS  Google Scholar 

  6. V.L. Gole, P.R. Gogate, J. Sep. Puri. Technol. 133, 212–220 (2014)

    Article  CAS  Google Scholar 

  7. B.B. Nileema, D.B. Snehal, R.D. Rachana, D.M. Deepika, P.H. Shruti, S.B. Barnali, V.M. Ashish, R.G. Parag, Ultrason. Sonochem. 21, 1797–1804 (2014)

    Google Scholar 

  8. M. Delnavaz, B. Ayati, H. Ganjidoust, S. Sanjabi, Environ. Eng. Manag. J. 10, 10 (2011)

    Google Scholar 

  9. K.P. Jyothi, S. Yesodharan, E.P. Yesodharan, Ultrason. Sonochem. 21, 5 (2014)

    Article  Google Scholar 

  10. Z.M. Shaykhi, A.A.L. Zinatizadeh, J. Taiwan. Inst. Chem. E 45, 4 (2014)

    Article  Google Scholar 

  11. M.T. Taghizadeh, R. Abdollahi, Ultrason. Sonochem. 18, 1 (2011)

    Article  Google Scholar 

  12. M. Delnavaz, B. Ayati, H. Ganjidoust, S. Sanjabi, Toxicol. Environ. Chem. 94, 1086–1098 (2012)

    Article  CAS  Google Scholar 

  13. E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, 22nd Edition (2012)

  14. R. Pflieger, T. Chave, G. Vite, L. Jouve, S.I. Nikitenko, Ultrason. Sonochem. 26, 169–175 (2015)

    Article  CAS  Google Scholar 

  15. A. Ehteram, M. Hamadanian, S.Z. Mirdamadian, V. Jabbari, J. NanoStructures 4, 75–82 (2014)

    Google Scholar 

  16. R. Darvishi-Cheshmeh-Soltani, S. Jorfi, H. Ramezani, S. Purfadakari, Ultrason. Sonochem. 28, 69–78 (2016)

    Article  CAS  Google Scholar 

  17. X. Chen, J. Dai, G. Shi, L. Li, G. Wang, H. Yang, Ultrason. Sonochem. 29, 172–177 (2016)

    Article  CAS  Google Scholar 

  18. M.A. NasirKhan, M. Siddique, F. Wahid, R. Khan, Ultrason. Sonochem. 26, 370–377 (2015)

    Article  Google Scholar 

  19. A. Akyol, O.T. Canb, M. Bayramoglu, Water. Process. Eng. 8, 45–54 (2015)

    Article  Google Scholar 

  20. K. Kang, M. Jang, M Cui, P. Qiu, S. Na, Y. Son, Chem. Eng. J. 264, 522–530 (2015)

    Article  CAS  Google Scholar 

  21. T. Kim, M.J. Lee, Int. J. Adv. Eng. Tech 3, 2 (2010)

    Google Scholar 

  22. B. Neppolian, A. Bruno, C.L. Bianchi, M. Ashokkumar, Ultrason. Sonochem. 19, 9–15 (2012)

    Article  CAS  Google Scholar 

  23. S. GaneshBabu, R. Vinoth, B. Neppolian, D.D. Dionysiou, M. Ashokkumar, J. Haz. Mat. (2016). doi:10.1016/j.jhazmat.2015.02.071

    Google Scholar 

  24. B. Neppolian, L. Ciceri, C.L. Bianchi, F. Grieser, M. Ashokkumar, Ultrason. Sonochem. 18, 135–139 (2011)

    Article  CAS  Google Scholar 

  25. A. Hassani, A.K. hataee, S. Karaca, J. Mol. Catal. A-Chem 409, 149–161 (2015)

    Article  CAS  Google Scholar 

  26. T. Papadam, N.P. Xekoukoulotakis, I. Poulios, D. Mantzavinos, J. Photoch. Photobio. A 186, 308–315 (2007)

    Article  CAS  Google Scholar 

  27. M.R. Hoffmann, S.T. Martin, W. Choi, D.F. Bahnemann, Environ. Applica. Semicond. Photo. Chem. Review. 95, 69–96 (1995)

    CAS  Google Scholar 

  28. B. Hu, C. Wu, Z. Zhang, L. Wang, Ceramics. Int. 40, 7015–7021 (2014)

    Article  CAS  Google Scholar 

  29. L.J. Xu, W. Chu, N. Graham, Chem. Eng. J. 240, 541–547 (2014)

    Article  CAS  Google Scholar 

  30. Z. Wei, J.A. Kosterman, R. Xiao, G.Y. Pee, M. Cai, L.K. Weavers, Ultrason. Sonochem. 27, 325–333 (2015)

    Article  CAS  Google Scholar 

  31. J.A. Frim, J.F. Rathman, L.K. Weavers, Water Res. 37, 3155–3163 (2003)

    Article  CAS  Google Scholar 

  32. G.J. Price, E.J. Lenz, Ultrasonics 31, 451–456 (1993)

    Article  CAS  Google Scholar 

  33. L.K. Weavers, N. Malmstadt, M.R. Hoffmann, Environ. Sci. Technol. 34, 1280–1285 (2000)

    Article  CAS  Google Scholar 

  34. A. Martinez-Tarifa, S. Arrojo, A.L. Avila-Marin, J.A. Perez-Jimenez, V. Saez, M.L. Ruiz-Lorenzo, Chem. Eng. J. 157, 420–426 (2010)

    Article  CAS  Google Scholar 

  35. A. Brotchie, G.F.M. Ashokkumar, Phys. Rev. Lett. 102 (2009). doi:10.1103/PhysRevLett.102.084302

  36. H. Zhao, G. Zhang, Q. Zhang, Sonochem 21, 3 (2014)

    Google Scholar 

  37. B. Sami, Technology 1, 221–232 (2006)

    Google Scholar 

  38. R. C Wang, C. W Yu, Ultrason. Sonochem. 20, 553–564 (2013)

    Article  CAS  Google Scholar 

  39. N. Ghows, Ultrason. Sonochem. 20, 386–394 (2013)

    Article  CAS  Google Scholar 

  40. A. Mowla, M. Mehrvar, R. Dhib, Chem. Eng. J. 255, 411–423 (2014)

    Article  CAS  Google Scholar 

  41. M. Ghaedi, M. Roosta, A.M. Ghaedi, A. Ostovan, I. Tyagi, S. Agarwal, Vinod Kumar Gupta, Res. Chem. Intermed. (2016). doi:10.1007/s11164-015-2285-x

    Google Scholar 

  42. B. Vahid, T. Mousanejad, A. Khataee, Res. Chem. Intermed. 41, 10 (2015)

    Article  Google Scholar 

  43. A.A. Gobouri, Res. Chem. Intermed. 42, 5 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bita Ayati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, S., Ayati, B. & Rezaee, A. Optimization of reaction parameters for the sonophotocatalytic degradation of hydroquinone. Res Chem Intermed 43, 1935–1956 (2017). https://doi.org/10.1007/s11164-016-2740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2740-3

Keywords

Navigation