Skip to main content
Log in

Enhanced sonolytic mineralization of basic red 29 in water by integrated ultrasound/Fe2+/TiO2 treatment

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Advanced oxidation processes (AOPs), based on hydroxyl radical (·OH) induced oxidation, have been widely investigated to develop novel and green technologies for wastewater treatment. In this work, the degradation and mineralization of Basic Red 29 (BR29), a cationic azo dye, by ultrasound (US) at 300 kHz and 80 W was investigated. Even if ultrasound eliminated BR29 (30 mg L−1) in 1 h, a low degree of mineralization (~10 %) was obtained due to the hydrophilic character of the byproducts formed during the sono-oxidative process. To overcome this weakness, an innovative technique integrating ultrasound/Fe2+/TiO2 was used and was found to be more effective for the degradation and mineralization of the dye. The amount of each catalyst was optimized for the three systems US/TiO2, US/Fe2+ and US/Fe2+/TiO2. The degradation rate of BR29 with US/Fe2+ and US/Fe2+/TiO2 treatments was, respectively, 2 and 2.34 times higher than that obtained with US alone. Correspondingly, the mineralization degree increased from 5 % with ultrasound alone to 10 % with US/TiO2, 35 % with US/Fe2+ and 64 % with US/Fe2+/TiO2 after 30 min of treatment and from 10 % with US to 13, 51, and 81 % with, respectively, US/TiO2, US/Fe2+, and US/Fe2+/TiO2 processes after 1 h of treatment. These results showed a synergy of 1.41 at 30 min and 1.29 at 1 h between US/Fe2+ and US/TiO2 processes toward the mineralization of BR29. The mechanism of the beneficial effect of the US/Fe2+/TiO2 integrating treatment was clarified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.L. Wang, L.J. Xu, Crit. Rev. Environ. Sci. Technol. 42, 251–325 (2012)

    Article  Google Scholar 

  2. S. Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment (IWA Publishing, London, 2004)

    Google Scholar 

  3. M.A. Tarr, Chemical Degradation Methods for Wastes and Pollutants (Marcel Dekker Inc, New York, 2003)

    Book  Google Scholar 

  4. Y.G. Adewuyi, Ind. Eng. Chem. Res. 40, 4681–4715 (2001)

    Article  CAS  Google Scholar 

  5. T. Yonar, Decolorisation of textile dyeing effluents using advanced oxidation processes, in Advances in Treating Textile Effluent, ed. by P. Hauser (InTech, China, 2011)

    Google Scholar 

  6. A. Matilainena, M. Sillanpää, Chemosphere 80, 351–365 (2010)

    Article  Google Scholar 

  7. F. Méndez-Arriaga, R.A. Torres-Palma, C. Pétrier, S. Esplugas, J. Gimenez, C. Pulgarin, Water Res. 43, 3984–3991 (2009)

    Article  Google Scholar 

  8. Z. Liu, Y. Kanjo, S. Mizutani, Sci. Total Environ. 407, 731–748 (2009)

    Article  CAS  Google Scholar 

  9. R.A. Torres-Palma, J.I. Nieto, E. Combet, C. Pétrier, C. Pulgarin, Appl. Catal. B Environ. 80, 168–175 (2008)

    Article  Google Scholar 

  10. T.J. Mason, C. Pétrier, Advanced oxidation processes for water and wastewater treatment, in Ultrasound processes, ed. by S. Parson (IWA Publishing, London, 2004)

    Google Scholar 

  11. A. Verma, A.K. Hura, D. Dixit, Desalination Water Treat 56, 677–683 (2015)

    Article  CAS  Google Scholar 

  12. S. Papoutsakis, S. Miralles-Cuevas, I. Oller, J.L. Garcia Sanchez, S. Malato, C. Pulgarin, Catal. Today 252, 59–61 (2015)

    Article  Google Scholar 

  13. N. Vela, J. Fenoll, I. Garrido, G. Navarro, M. Gambín, S. Navarro, Catal. Today 252, 70–77 (2015)

    Article  CAS  Google Scholar 

  14. A. Verma, D. Dixit, A. Toor, J. Srivastava, Environ. Prog. Sustain. Energy 34, 380–386 (2015)

    Article  CAS  Google Scholar 

  15. T.J. Mason, J.P. Lorimer, Applied Sonochemistry: The Use of Power Ultrasound in Chemistry and Processing (Wiley-VCH, Weinheim, 2002)

    Book  Google Scholar 

  16. M.R. Hoffmann, R. Hochemer, Ultrason. Sonochem. 3, S163–S172 (1996)

    Article  CAS  Google Scholar 

  17. M.F. Lamy, A. Francony, A. Benahcen, B. David, J. Phys. Chem. 98, 10514–10520 (1994)

    Article  Google Scholar 

  18. C. Pétrier, D. Casadonte, Adv. Sonochem. 6, 91–109 (2001)

    Article  Google Scholar 

  19. L.H. Thompson, L.K. Doraiswamy, Ind. Eng. Chem. Res. 38, 1215–1249 (1999)

    Article  CAS  Google Scholar 

  20. K.S. Suslick, D.A. Hammerton, J. Am. Chem. Soc. 108, 5641–5642 (1986)

    Article  CAS  Google Scholar 

  21. T. Sivasankat, V.S. Moholkar, Ind. Eng. Chem. Res. 54, 2206–2219 (2008)

    Google Scholar 

  22. E.J. Hart, A. Henglein, J. Phys. Chem. 91, 3654–3660 (1987)

    Article  CAS  Google Scholar 

  23. K. Makino, M.M. Mossoba, P. Riesz, J. Am. Chem. Soc. 104, 3537–3539 (1982)

    Article  CAS  Google Scholar 

  24. M.M. Castellanos, D. Reyman, C. Sieiro, P. Calle, Ultrason. Sonochem. 8, 17–22 (2001)

    Article  CAS  Google Scholar 

  25. M. Anbar, I. Pecht, J. Phys. Chem. 68, 352–357 (1964)

    Article  CAS  Google Scholar 

  26. T. Sivasankar, V.S. Moholkar, Ultrason. Sonochem. 16, 769–781 (2009)

    Article  CAS  Google Scholar 

  27. E.L. Mead, R.G. Sutherland, R.E. Verrall, Can. J. Chem. 54, 1114–1120 (1976)

    Article  CAS  Google Scholar 

  28. R. Pflieger, T. Chave, G. Vite, L. Jouve, S.I. Nikitenko, Ultrason. Sonochem. 26, 169–175 (2015)

    Article  CAS  Google Scholar 

  29. S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, Chem. Eng. J. 158, 550–557 (2010)

    Article  CAS  Google Scholar 

  30. H. Ghodbane, O. Hamdaoui, Ultrason. Sonochem. 16, 593–598 (2009)

    Article  CAS  Google Scholar 

  31. C. Minero, P. Pellizzari, V. Maurino, E. Pelizzetti, D. Vione, Appl. Catal. B Environ. 77, 308–316 (2007)

    Article  Google Scholar 

  32. S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, C. Pétrier, J Hazard. Mater. 175, 593–599 (2010)

    Article  CAS  Google Scholar 

  33. T. Tuziuti, K. Yasui, Y. Iida, H. Taoda, S. Koda, Ultrasonics 42, 597–601 (2004)

    Article  CAS  Google Scholar 

  34. A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner, Ultrason. Sonochem. 14, 509–514 (2007)

    Article  CAS  Google Scholar 

  35. M. Kubo, K. Matsuok, A. Takahashi, N. Shibasaki-Kitakawa, T. Yonemoto, Ultrason. Sonochem. 12, 263–269 (2005)

    Article  CAS  Google Scholar 

  36. R.A. Torres-Palma, C. Pétrier, E. Combet, F. Moulet, C. Pulgarin, Environ. Sci. Technol. 41, 297–302 (2007)

    Article  Google Scholar 

  37. C. Minero, M. Licchiari, D. Vione, V. Maurino, Environ. Sci. Technol. 39, 8936–8942 (2005)

    Article  CAS  Google Scholar 

  38. C. Berberidou, I. Poulios, N.P. Xekoukoulotakis, D. Mantzavinos, Appl. Catal. B 74, 63–72 (2007)

    Article  CAS  Google Scholar 

  39. O. Moumeni, O. Hamdaoui, Chem. Eng. Process. 62, 47–53 (2012)

    Article  CAS  Google Scholar 

  40. M. Chiha, O. Hamdaoui, S. Baup, N. Gondrexon, Ultrason. Sonochem. 18, 943–950 (2011)

    Article  CAS  Google Scholar 

  41. S. Chakma, V.S. Moholkar, AIChE 59, 11485–11494 (2013)

    Article  Google Scholar 

  42. S. Chakma, V.S. Moholkar, Ind. Eng. Chem. Res. 53, 6855–6865 (2014)

    Article  CAS  Google Scholar 

  43. S. Chakma, V.S. Moholkar, Ultrason. Sonochem. 22, 287–299 (2015)

    Article  CAS  Google Scholar 

  44. T.J. Mason, J.P. Lorimer, D.M. Bates, Ultrasonics 30, 40–42 (1992)

    Article  CAS  Google Scholar 

  45. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol. 22, 798–806 (1988)

    Article  CAS  Google Scholar 

  46. R.A. Torres, C. Pétrier, E. Combet, M. Carrier, C. Pulgarin, Ultrason. Sonochem. 15, 605–611 (2008)

    Article  CAS  Google Scholar 

  47. E. Villaroel, J. Silva-Agredo, C. Pétrier, G. Taborda, R.A. Torres-Palma, Ultrason. Sonochem. 21, 1763–1771 (2014)

    Article  CAS  Google Scholar 

  48. S. Dalhatou, C. Pétrier, S. Laminsi, S. Baup, Int. J. Environ. Sci. Technol. 12, 35–44 (2015)

    Article  CAS  Google Scholar 

  49. Boutamine Z, Hamdaoui O, Merouani S (2016) Turk. J. Chem. (in press)

  50. Y. Nagata, M. Nagakawa, H. Okuno, Y. Mizukoshi, B. Yim, Y. Maeda, Utrason. Sonochem. 7, 115–120 (2000)

    Article  CAS  Google Scholar 

  51. J.M. Joseph, H. Destaillats, H.M. Hung, M.R. Hoffmann, J. Phys. Chem. A 104, 301–307 (2000)

    Article  CAS  Google Scholar 

  52. C. Balaji, V.S. Moholkar, A.B. Pandit, M. Ashokkumar, Ind. Eng. Chem. Res. 50, 11485–11494 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the Ministry of Higher Education and Scientific Research of Algeria (Project No. A16N01UN230120130010) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oualid Hamdaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutamine, Z., Hamdaoui, O. & Merouani, S. Enhanced sonolytic mineralization of basic red 29 in water by integrated ultrasound/Fe2+/TiO2 treatment. Res Chem Intermed 43, 1709–1722 (2017). https://doi.org/10.1007/s11164-016-2724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2724-3

Keywords

Navigation