Skip to main content
Log in

Influence of chlorine substitution on the crystal structures of diaryl oxalate

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Three diaryl oxalate derivatives, bis(4-chlorophenyl)oxalate, bis(2, 6-dichlorophenyl)oxalate and bis(2, 4, 6-trichlorophenyl)oxalate, have been synthesized and characterized via X-ray single crystal diffraction, differential scanning calorimetry, thermogravimetric analysis and infrared spectra, for the purpose of studying the influence of chlorine substitution on the crystal structures of diaryl oxalate. This work has demonstrated that, depending on the position and number, chlorine substitution will influence the molecular geometries and stacking modes of diaryl oxalate by tuning the types and numbers of intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.R.T. Tiekink, K. Vittal (eds.), Organic Crystal Engineering (Wiley, Chichester, 2010)

    Google Scholar 

  2. D. Braga, F. Greponi, Making Crystals by Design: Methods, Techniques and Applications (Wiley-VCH, Chichester, 2007)

    Google Scholar 

  3. G.R. Desiraju (ed.), Crystal Design-Structure and Function, Perspectives in Supramolecular Chemistry (Wiley, Chichester, 2003)

    Google Scholar 

  4. E. Weber (ed.), Design of Organic Solids, Topics in Current Chemistry (Springer, New York, 1998)

    Google Scholar 

  5. A.D. Burrows, Encyclopedia of Supramolecular Chemistry (CRC, Boca Raton, 2004)

    Google Scholar 

  6. D.M.P. Mingos, Supramolecular Assembly Via Hydrogen Bonds I and II, Structure and Bonding (Springer, New York, 2004)

    Google Scholar 

  7. D.N. Chin, J.A. Zerkowski, J.C. MacDonald, G.M. Whitesides, Organnised Molecular Assemblies in the Solid State (Wiley, Chichester, 1999)

    Google Scholar 

  8. S.A. Barnett, A. Johnston, A.J. Florence, S.L. Price, D.A. Tocher, Cryst. Growth Des. 8, 24–36 (2008)

    Article  CAS  Google Scholar 

  9. S. Sengupta, A. Goswami, S. Ganguly, S. Bala, M.K. Bhunia, R. Mondal, Cryst. Eng. Commun. 13, 6136–6149 (2011)

    Article  CAS  Google Scholar 

  10. M.A. Abdalrahman, F.F. Awwadi, G.B. Jameson, C.P. Landee, C.G. Saunders, M.M. Turnbull, J.L. Wikaira, Cryst. Eng. Commun. 15, 4309–4320 (2013)

    Article  CAS  Google Scholar 

  11. F.F. Awwadi, D. Taher, S.F. Haddad, M.M. Turnbull, Cryst. Growth Des. 14, 1961–1971 (2014)

    Article  CAS  Google Scholar 

  12. J. Ashmore, R. Bishop, D.C. Craig, M.L. Scudder, Cryst. Eng. Commun. 4, 194–198 (2002)

    Article  CAS  Google Scholar 

  13. P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. ED 47, 6114–6127 (2008)

    Article  CAS  Google Scholar 

  14. E. Parisini, P. Metrangolo, T. Pilati, G. Resnati, G. Terraneo, Chem. Soc. Rev. 40, 2267–2278 (2011)

    Article  CAS  Google Scholar 

  15. M. Baldrighi, D. Bartesaghi, G. Cavallo, M.R. Chierotti, R. Gobetto, P. Metrangolo, T. Pilati, G. Resnati, G. Terraneo, Cryst. Eng. Commun. 16, 5897–5904 (2014)

    Article  CAS  Google Scholar 

  16. A. Mukherjee, S. Tothadi, G.R. Desiraju, Acc. Chem. Res. 47, 2514–2524 (2014)

    Article  CAS  Google Scholar 

  17. S.Y. Kazemi, S.M. Abedirad, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 782–786 (2014)

    Article  CAS  Google Scholar 

  18. E.A. Chandross, Tetrahedron Lett. 12, 761–765 (1963)

    Google Scholar 

  19. T. Wilson, Photochem. Photobiol. 62, 601–606 (1995)

    Article  CAS  Google Scholar 

  20. T. Maruyama, S. Narita, J. Motoyoshiya, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 252, 222–231 (2013)

    CAS  Google Scholar 

  21. P.M. Lahti, D.A. Modarelli, A. Inceli, Acta Cryst. C 50, 1308–1312 (1994)

    Article  Google Scholar 

  22. X.R. Zeng, Y. Zhang, X.Z. You, Acta Phys. Chem. Sin. 17, 361–363 (2001)

    CAS  Google Scholar 

  23. M.M. Rauhut, N.J. Bridgewater, U.S. Patent 1971,3749679

  24. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Crystal Explorer 2.0 (University of Western Australia, Perth, 2007)

    Google Scholar 

  25. A. Bondi, J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  26. M.J. Frisch et al., Gaussian 03. Revision A.1 (Gaussian, Inc., Pittsburgh, PA, 2003)

    Google Scholar 

  27. J.T. He, B. Xu, F.P. Chen, H.J. Xia, K.P. Li, L. Ye, W.J. Tian, J. Phys. Chem. C 113, 9892–9899 (2009)

    Article  CAS  Google Scholar 

  28. F.P.A. Fabbiani, L.T. Byrne, J.J. McKinnon, M.A. Spackman, Cryst. Eng. Commun. 9, 728–752 (2007)

    Article  CAS  Google Scholar 

  29. Y.H. Luo, S.W. Ge, W.T. Song, B.W. Sun, N. J. Chem. 38, 723–729 (2014)

    Article  CAS  Google Scholar 

  30. Y.H. Luo, B.W. Sun, Cryst. Eng. Commun. 15, 7490–7497 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Project 21371031) and the International S&T Cooperation program of China (2015DFG42240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai-Wang Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, DE., Luo, YH., Li, TT. et al. Influence of chlorine substitution on the crystal structures of diaryl oxalate. Res Chem Intermed 43, 1591–1607 (2017). https://doi.org/10.1007/s11164-016-2717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2717-2

Keywords

Navigation