Skip to main content
Log in

Optimization for catalytic performances of Hβ zeolite in the acylation of 2-methylfuran by surface modification and solvents effect

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The liquid phase acylation of 2-methylfuran with acetic anhydride over modified Hβ zeolite was first conducted in a continuous flow reactor. The deactivation of Hβ zeolites was attributed to strong adsorption of reactants or products and was verified by GC–MS and 13C MAS NMR. Deactivated zeolites can be regenerated to their original state by calcination. The acidic properties was adjusted by surface modification on Hβ, the maximum yield of 89.5 mol% and selectivity of 100 % were obtained over tartaric acid modified by Hβ. The deposition of tetraethoxysilane to silica on Hβ contributed to enhancing the catalytic stability. Combined with the results of NH3-TPD and Py-FTIR, the amount of Broensted acids played a major role on catalytic activity. A close relationship between the catalytic stability and the ratio of the amount of strong to weak acids at 1:1 was highlighted here. The solvents' effect on the catalytic performances was examined, and 1,2-dichloroethane with moderate polarity exerted a positive effect on catalytic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Bejblova, D. Prochazkova, J. Cejka, ChemSusChem 2, 48 (2009)

    Article  Google Scholar 

  2. J.A. Melero, R.V. Grieken, G. Morales, V. Nuno, Catal. Commun. 5, 131 (2004)

    Article  CAS  Google Scholar 

  3. I. Komoto, J.I. Matsuo, S. Kobayashi, Top. Catal. 19, 43 (2002)

    Article  CAS  Google Scholar 

  4. P. Moreau, A. Finiels, P. Meric, F. Fajula, Catal. Lett. 85, 199 (2003)

    Article  CAS  Google Scholar 

  5. H.K. Heinichen, W.F. Holderich, J. Catal. 185, 408 (1999)

    Article  CAS  Google Scholar 

  6. U. Freese, F. Heinrich, F. Roessner, Catal. Today 49, 237 (1999)

    Article  CAS  Google Scholar 

  7. G. Sartori, R. Maggi, Chem. Rev. 111, 181 (2011)

    Article  Google Scholar 

  8. K.G. Bhattacharyya, A.K. Talukdar, P. Das, S. Sivasanker, Catal. Commun. 2, 105 (2001)

    Article  CAS  Google Scholar 

  9. M.V. Shamzhy, O.V. Shvets, M.V. Opanasenko, L. Kurfiřtová, D. Kubička, J. Čejka, ChemCatChem 7, 1891 (2013)

    Article  Google Scholar 

  10. C. Jo, R. Ryoo, N. Žilkovác, D. Vitvarovác, J. Čejka, Catal. Sci. Technol. 3, 2119 (2013)

    Article  CAS  Google Scholar 

  11. J. Kaur, K. Griffin, B. Harrison, I.V. Kozhevnikov, J. Catal. 208, 448 (2002)

    Article  CAS  Google Scholar 

  12. G.D. Yadav, N.S. Asthana, V.S. Kamble, Appl. Catal. A Gen. 240, 53 (2003)

    Article  CAS  Google Scholar 

  13. F. Frouri, S. Célérier, P. Ayrault, F. Richard, Appl. Catal. B Environ. 168, 515 (2015)

    Article  Google Scholar 

  14. M.L. Kantam, K.V.S. Ranganath, M. Sateesh, K.B.S. Kumar, B.M. Choudary, J. Mol. Catal. A Chem. 225, 15 (2005)

    Article  CAS  Google Scholar 

  15. E.G. Derouane, C.J. Dillon, D. Bethell, S.B.D. Hamid, J. Catal. 187, 209 (1999)

    Article  CAS  Google Scholar 

  16. E. Fromentin, J.-M. Coustard, M. Guisnet, J. Mol. Catal. A Chem. 159, 377 (2000)

    Article  CAS  Google Scholar 

  17. P. Botella, A. Corma, G. Sastre, J. Catal. 197, 81 (2001)

    Article  CAS  Google Scholar 

  18. C. Guignard, V. Pedron, F. Richard, R. Jacquot, M. Spagnol, J.M. Coutard, G. Perot, Appl. Catal. A Gen. 234, 79 (2002)

    Article  CAS  Google Scholar 

  19. V.F.D. Álvaro, A.F. Brigas, E.G. Derouane, J.P. Lourenco, B.S. Santos, J. Mol. Catal. A Chem. 305, 100 (2009)

    Article  Google Scholar 

  20. U. Freese, F. Heinrich, F. Roessner, Catal. Today 49, 237 (1999)

    Article  CAS  Google Scholar 

  21. D. Rohan, C. Canaff, E. Fromentin, M. Guisnet, J. Catal. 177, 296 (1998)

    Article  CAS  Google Scholar 

  22. P.R. Reddy, M. Subrahmanyam, S.J. Kulkarni, Catal. Lett. 54, 95 (1998)

    Article  CAS  Google Scholar 

  23. D.S. Zhao, J.L. Wang, J. Zhang, Catal. Lett. 126, 188 (2008)

    Article  CAS  Google Scholar 

  24. W.H. Chen, T. Chang Tsai, S.J. Jong, Q. Zhao, J. Mol. Catal. A Chem. 181, 41 (2002)

    Article  CAS  Google Scholar 

  25. G.Y. Bai, H.H. Zhang, T.Y. Li, H.X. Dong, J. Han, Res. Chem. Intermed. 41, 5041 (2015)

    Article  CAS  Google Scholar 

  26. S. Zheng, H.R. Heydenrych, H.P. Rögerb, A. Jentysa, J.A. Lerchera, Top. Catal. 22, 101 (2003)

    Article  CAS  Google Scholar 

  27. R. Srivastava, N. Iwasa, S.I. Fujita, M. Arai, Catal. Lett. 130, 655 (2009)

    Article  CAS  Google Scholar 

  28. D.M. Roberge, H. Hausmann, W.F. Holderich, Phys. Chem. Chem. Phys. 4, 3128 (2002)

    Article  CAS  Google Scholar 

  29. M. Matsukata, M. Ogura, T. Osaki, P.R.H.P. Rao, M. Nomura, E. Kikuchi, Top. Catal. 9, 77 (1999)

    Article  CAS  Google Scholar 

  30. X.S. Zhao, G.Q. Lu, J. Phys. Chem. B 102, 1556 (1998)

    Article  CAS  Google Scholar 

  31. C.A. Emeis, J. Catal. 141, 347 (1993)

    Article  CAS  Google Scholar 

  32. G.Y. Bai, Z. Ma, L.J. Shi, T.Y. Li, J. Han, G.F. Chen, N. Li, P.D. Liu, Res. Chem. Intermed. 38, 2501 (2012)

    Article  CAS  Google Scholar 

  33. K.K. Cheralathan, I.S. Kumar, M. Palanichamy, V. Murugesan, Appl. Catal. A Gen. 241, 247 (2003)

    Article  CAS  Google Scholar 

  34. M. Ghiaci, A. Abbaspur, R. Kia, C. Belver, R. Trujillano, V. Rives, M.A. Vicente, Catal. Commun. 8, 49 (2007)

    Article  CAS  Google Scholar 

  35. R.W. Weber, K.P. MÖller, C.T. O’Connor, Microporous Mesoporous Mater. 35–36, 533 (2000)

    Article  Google Scholar 

  36. Z.R. Zhu, Z.K. Xie, Q.L. Chen, D.J. Kong, W. Li, W.M. Yang, C. Li, Microporous Mesoporous Mater. 101, 169 (2007)

    Article  CAS  Google Scholar 

  37. K.S. Triantafyllidis, L. Nalbandian, P.N. Trikalitis, A.K. Ladavos, T. Mavromoustakos, C.P. Nicolaides, Microporous Mesoporous Mater. 75, 89 (2004)

    Article  CAS  Google Scholar 

  38. P. Dejaifve, A. Auroux, P.C. Gravelle, J.C. Vedrine, Z. Gabelica, E.G. Derouane, J. Catal. 70, 123 (1981)

    Article  CAS  Google Scholar 

  39. Z.H. Chen, W.Q. Chen, T.X. Tong, A.W. Zeng, J. Mol. Catal. A Chem. 396, 231 (2015)

    Article  CAS  Google Scholar 

  40. M. Casagrande, L. Storaro, M. Lenarda, R. Ganzerla, Appl. Catal. A Gen. 201, 263 (2000)

    Article  CAS  Google Scholar 

  41. V.K. Dimroth, C. Reichardt, T. Siepmann, F. Bohlmann, Liebigs Ann. Chem. 661, 1 (1963)

    Article  CAS  Google Scholar 

  42. S.D. Kim, K.H. Lee, J.S. Lee, Y.J. Kim, K.E. Yoon, J. Mol. Catal. A Chem. 152, 33 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the State Key Laboratory of Chemical Engineering (Tianjin). We gratefully thank the Sinopec Research Institute of Petroleum Processing of China for the Py-IR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiwu Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Chen, W. & Zeng, A. Optimization for catalytic performances of Hβ zeolite in the acylation of 2-methylfuran by surface modification and solvents effect. Res Chem Intermed 43, 1557–1574 (2017). https://doi.org/10.1007/s11164-016-2715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2715-4

Keywords

Navigation