Skip to main content
Log in

The reactivity of 2,5-diaminoimidazolone base modification towards aliphatic primary amino derivatives: nucleophilic substitution at C5 as a potential source of abasic sites in oxidatively damaged DNA

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

N5-deoxyribosyl derivatives of 2,5-diaminoimidazolone formed by oxidative damage to the guanine bases in 2-deoxyguanosine and highly polymerized DNA readily undergo nucleophilic substitution at C5 in reaction with primary amines in neutral aqueous solutions at 37–70 °C, as it was found in a kinetic study using reverse-phase HPLC. The reaction of 2-amino-5-[(2′-deoxy-β-D-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) with excess of ethanolamine, alanine and γ-aminobutyric acid (0.2–1 M) is a pseudo-first-order process that proceeds with 45–80 % yields depending on the nature of the amine, its concentration, and the reaction temperature. In the case of ethanolamine, the corresponding bimolecular rate constant has a pre-exponential factor and activation energy of 1.1 × 105 s−1 and 47 kJ mol−1, respectively. The reaction is highly competitive with the previously described hydrolysis of dIz into 2,2-diamino-4-[(2-deoxy-β-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone under biologically relevant conditions. A similar reaction with the same lesion in polymeric DNA results in the release of a low-molecular-weight analog of dIz, presumably producing an abasic site as the second reaction product. Kinetic characteristics of this process make it a potentially important source of abasic sites in oxidatively damaged DNA, formed through the reaction of 2,5-diaminoimidazolone lesions with naturally abundant DNA-affinic amines and proteins. The release of low-molecular-weight analogs of dIz can potentially be employed for quantification of imidazolone lesions in oxidized DNA. The half-life of imidazolone lesions in double-stranded DNA evaluated using this approach was found to be 154 min at 37 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Cadet, M. Berger, G.W. Buchko, P.C. Joshi, S. Raoul, J.-L. Ravanat, J. Am. Chem. Soc. 116, 7403 (1994)

    Article  CAS  Google Scholar 

  2. W. Adam, G.N. Grimm, C.R. Saha-Moller, F. Dall’Aqua, G. Miolo, D. Vedaldi, Chem. Res. Toxicol. 11, 1089 (1998)

    Article  CAS  Google Scholar 

  3. T. Suzuki, M. Masuda, M.D. Friesen, B. Fenet, H. Ohshima, Nucl. Acids Res. 30, 2555 (2002)

    Article  CAS  Google Scholar 

  4. A. Joffe, S. Mock, B.H. Yun, A. Kolbanovskiy, N.E. Geacintov, V. Shafirovich, Chem. Res. Toxicol. 16, 966 (2003)

    Article  CAS  Google Scholar 

  5. R. Misiaszek, C. Crean, A. Joffe, N.E. Geacintov, V. Shafirovich, J. Biol. Chem. 279, 32106 (2004)

    Article  CAS  Google Scholar 

  6. H. Yu, L. Venkatarangan, J.S. Wishnok, S.R. Tannenbaum, Chem. Res. Toxicol. 18, 1849 (2005)

    Article  CAS  Google Scholar 

  7. M.J. Napolitano, D.J. Stewart, D.W. Margerum, Chem. Res. Toxicol. 19, 1451 (2006)

    Article  CAS  Google Scholar 

  8. J. Shao, N.E. Geacintov, V. Shaforovich, J. Phys. Chem. B 114, 6685 (2010)

    Article  CAS  Google Scholar 

  9. S. Raoul, J. Cadet, J. Am. Chem. Soc. 118, 1892 (1996)

    Article  CAS  Google Scholar 

  10. G.W. Buchko, J. Cadet, J.-L. Ravanat, P. Labataille, Int. J. Radiat. Biol. 63, 669 (1993)

    Article  CAS  Google Scholar 

  11. S. Raoul, M. Berger, G.W. Buchko, P.C. Joshi, B. Morin, M. Weinfeld, J. Cadet, J. Chem. Soc. Perkin Trans. 2, 371 (1996)

    Article  Google Scholar 

  12. D. Gasparutto, J.-L. Ravanat, O. Gerot, J. Cadet, J. Am. Chem. Soc. 120, 10283 (1998)

    Article  CAS  Google Scholar 

  13. K. Kino, I. Saito, J. Am. Chem. Soc. 120, 7373 (1998)

    Article  CAS  Google Scholar 

  14. B. Matter, D. Malejka-Giganti, A.S. Csallani, N. Tretyakova, Nucleic Acids Res. 34, 5449 (2006)

    Article  CAS  Google Scholar 

  15. P.T. Henderson, J.C. Delaney, F. Gu, S.R. Tannenbaum, J.M. Essigmann, Biochemistry 41, 914 (2002)

    Article  CAS  Google Scholar 

  16. M. Roginskaya, R. Mohseni, D. Ampadu-Boateng, Y. Razskazovskiy, Free Radic. Res. 50, 756 (2016)

    Article  CAS  Google Scholar 

  17. C. von Sonntag, Free-Radical-Induced DNA Damage and its Repair. A Chemical Perspective (Springer, Berlin, 2010), pp. 379–380

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Research Development Committee of East Tennessee State University for partial financial support of this project.

Funding

This study was funded in part by the Major Research Grant awarded to MR by the Research Development Committee of East Tennessee State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Roginskaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roginskaya, M., Janson, H., Seneviratni, D. et al. The reactivity of 2,5-diaminoimidazolone base modification towards aliphatic primary amino derivatives: nucleophilic substitution at C5 as a potential source of abasic sites in oxidatively damaged DNA. Res Chem Intermed 43, 1543–1555 (2017). https://doi.org/10.1007/s11164-016-2714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2714-5

Keywords

Navigation