Skip to main content
Log in

Kinetic studies of direct blue photodegradation over flower-like TiO2

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The kinetics of photocatalytic oxidation reaction for direct blue solution was studied by using flower-like TiO2 under the irradiation of ultraviolet (UV) light. A series of possible affecting factors were studied, including pH value, the additive amount of light catalyst, H2O2 and with or without Ag modification. The kinetics of photocatalytic degradation under UV was found following a pseudo-second-order reaction kinetic model with high regression coefficients (R 2). It has been demonstrated that the initial concentration and its related factors have influenced the photocatalytic degradation efficiency and corresponding kinetic parameters. Also, the kinetic parameter k is increasing with the degradation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Rong, F. Qiu, C. Zhang, L. Fu, Y. Wang, D. Yang, Ceram. Int. 2502, 41 (2015)

    Google Scholar 

  2. D. Zhang, J. Yang, S. Bao, Q. Wu, Q. Wang, Sci. Rep. 1399, 3 (2013)

    Google Scholar 

  3. B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. Xing, J. Zhang, Sci. Rep. 8591, 5 (2015)

    Google Scholar 

  4. G. Tian, Y. Chen, W. Zhou, K. Pan, C. Tian, X. Huang, H. Fu, CrystEngComm 2994, 13 (2011)

    Google Scholar 

  5. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 2997, 44 (2010)

    Google Scholar 

  6. G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q.M. Lu, H. Cheng, Chem. Rev. 9559, 114 (2014)

    Google Scholar 

  7. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 9987, 114 (2014)

    Google Scholar 

  8. W. Wang, C. Lu, Y. Ni, M. Su, Z. Xu, Mater. Lett. 11, 79 (2012)

    Article  Google Scholar 

  9. T.A. Westrich, K.A. Dahlberg, M. Kaviany, J.W. Schwank, J. Phys. Chem. C 16537, 115 (2011)

    Google Scholar 

  10. R. Su, M. Christensen, Y. Shen, J. Kibsgaard, B. Elgh, R.T. Vang, R. Bechstein, S. Wendt, A. Palmqvist, B.B. Iversen, F. Besenbacher, J. Phys. Chem. C 27039, 117 (2013)

    Google Scholar 

  11. W. Li, Z. Wu, J. Wang, A.A. Elzatahry, D. Zhao, Chem. Mater. 287, 26 (2014)

    Google Scholar 

  12. M.H. Priya, G. Madras, Ind. Eng. Chem. Res. 482, 45 (2006)

    Google Scholar 

  13. Y.R. Smith, A. Kar, V.R. Subramanian, Ind. Eng. Chem. Res. 10268, 48 (2009)

    Google Scholar 

  14. S. Basha, D. Keane, A. Morrissey, K. Nolan, M. Oelgemöller, J. Tobin, Ind. Eng. Chem. Res. 11302, 49 (2010)

    Google Scholar 

  15. C. Minero, Catal. Today 205, 54 (1999)

    Google Scholar 

  16. C.P.E.M. Minero, Sol. Energy 421, 56 (1996)

    Google Scholar 

  17. I. Salvadó-Estivill, D.M. Hargreaves, G. Li Puma, Environ. Sci. Technol. 2028, 41 (2007)

    Google Scholar 

  18. Z. Sun, J.H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y. Kang, S.X. Dou, J. Am. Chem. Soc. 19314, 133 (2011)

    Google Scholar 

  19. L. Mao, Y. Wang, Y. Zhong, J. Ning, Y. Hu, J. Mater. Chem. A 8101, 1 (2013)

    Google Scholar 

  20. T. Zhu, J. Li, Q. Wu, A.C.S. Appl, Mater. Interfaces 3448, 3 (2011)

    Google Scholar 

  21. C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, N. Liu, Langmuir 12841, 26 (2010)

    Google Scholar 

  22. A.K. Sinha, S. Jana, S. Pande, S. Sarkar, M. Pradhan, M. Basu, S. Saha, A. Pal, T. Pal, CrystEngComm 1210, 11 (2009)

    Google Scholar 

  23. R. Su, R. Tiruvalam, A.J. Logsdail, Q. He, C.A. Downing, M.T. Jensen, N. Dimitratos, L. Kesavan, P.P. Wells, R. Bechstein, H.H. Jensen, S. Wendt, C.R.A. Catlow, C.J. Kiely, G.J. Hutchings, F. Besenbacher, ACS Nano 3490, 8 (2014)

    Google Scholar 

  24. S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, ACS Nano 1259, 4 (2010)

    Google Scholar 

  25. D.S. Ovoshchnikov, B.G. Donoeva, V.B. Golovko, ACS Catal. 34, 5 (2015)

    Google Scholar 

  26. E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Nature 215, 495 (2013)

    Google Scholar 

  27. M.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, J. Phys. Chem. C 12840, 113 (2009)

    Google Scholar 

  28. R. Hao, X. Xiao, X. Zuo, J. Nan, W. Zhang, J. Hazard. Mater. 137, 209 (2012)

    Google Scholar 

  29. S. Saha, J.M. Wang, A. Pal, Sep. Purif. Technol. 147, 89 (2012)

    Google Scholar 

  30. C.G. Maia, A.S. Oliveira, E.M. Saggioro, J.C. Moreira, React. Kinet. Mech. Catal. 305, 113 (2014)

    Google Scholar 

  31. S.T. Martin, W. Choi, M.R. Hoffman, Chem. Rev. 69, 95 (1995)

    Google Scholar 

  32. M. Muruganandham, M. Swaminathan, Dyes Pigm. 133, 68 (2006)

    Google Scholar 

  33. E.M. Saggioro, A.S. Oliveira, T. Pavesi, C.G. Maia, L.F.V. Ferreira, J.C. Moreira, Molecules 10370, 16 (2011)

    Google Scholar 

  34. S. Basha, D. Keane, A. Morrissey, K. Nolan, M. Oelgemöller, J. Tobin, Ind. Eng. Chem. Res. 11302, 49 (2010)

    Google Scholar 

  35. A. Hu, R. Liang, X. Zhang, S. Kurdi, D. Luong, H. Huang, P. Peng, E. Marzbanrad, K.D. Oakes, Y. Zhou, M.R. Servos, J. Photochem. Photobiol. A 7, 256 (2013)

    Google Scholar 

  36. V. Subramanian, P.V. Kamat, E.E. Wolf, Ind. Eng. Chem. Res. 2131, 42 (2003)

    Google Scholar 

  37. U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C 1, 9 (2008)

    Google Scholar 

  38. M.N. Chong, B. Jin, C.W.K. Chow, C.P. Saint, Chem. Eng. J. 158, 152 (2009)

    Google Scholar 

  39. J. Sun, X. Wang, J. Sun, R. Sun, S. Sun, L. Qiao, J. Mol. Catal. A: Chem. 241, 260 (2006)

    Google Scholar 

  40. C. Shifu, C. Gengyu, Sol. Energy 1, 79 (2005)

    Google Scholar 

  41. K.M. Lee, S.B. Abdul Hamid, C.W. Lai, Mater. Sci. Semicond. Process. 40, 39 (2015)

    Article  Google Scholar 

  42. C. Wu, J. Chern, Ind. Eng. Chem. Res. 6450, 45 (2006)

    Google Scholar 

  43. S. Zhou, A.K. Ray, Ind. Eng. Chem. Res. 6020, 42 (2003)

    Google Scholar 

  44. J.A. Zazo, J.A. Casas, A.F. Mohedano, M.A. Gilarranz, J.J. Rodríguez, Environ. Sci. Technol. 9295, 39 (2005)

    Google Scholar 

  45. P.K. Dutta, S.O. Pehkonen, V.K. Sharma, A.K. Ray, Environ. Sci. Technol. 1827, 39 (2005)

    Google Scholar 

  46. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 1, 49 (2004)

    Google Scholar 

  47. B. Xin, L. Jing, Z. Ren, B. Wang, H. Fu, J. Phys. Chem. B 2805, 109 (2005)

    Google Scholar 

  48. D. Yang, Y. Sun, Z. Tong, Y. Tian, Y. Li, Z. Jiang, J. Phys. Chem. C 5827, 119 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC-21406184) and Scientific Research Starting Project of SWPU (No. 2014QHZ013). The authors would like to thank Peng Shi, Fei Huang and Pengfei Zhu for their useful discussions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, D., Ren, S. et al. Kinetic studies of direct blue photodegradation over flower-like TiO2 . Res Chem Intermed 43, 1529–1542 (2017). https://doi.org/10.1007/s11164-016-2713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2713-6

Keywords

Navigation