Skip to main content
Log in

Impact of the surface heterogeneity of commercial V2O5–WO3/TiO2 catalysts on the NH3–SCR–DeNO x reaction by kinetic modelling

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The impact of the surface heterogeneity of two commercial V2O5–WO3/TiO2 catalysts on the NH3–SCR–DeNO x process was investigated by kinetic modelling of the surface elementary steps. It was demonstrated that transient kinetic is sufficiently qualified to investigate the heterogeneity of catalytic active sites. In this context, possible deviations of the Langmuir adsorption isotherm formula were analyzed which still show a satisfactory deviation at temperatures below 623 K whereas the deviation increases rapidly at T > 623 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(C_{{{\text{NH}}_{ 3} }}\) :

Gas-phase NH3 concentration (mol m−3)

C NO :

Gas-phase NO concentration (mol m−3)

\(C_{{{\text{NO}}_{ 2} }}\) :

Gas-phase NO2 concentration (mol m−3)

\(\theta_{{{\text{NH}}_{ 3} }}\) :

NH3 surface coverage

\(\theta_{{{\text{NH}}_{ 3} }}^{*}\) :

Critical NH3 surface coverage

r a :

Rate of NH3 adsorption (s−1)

r d :

Rate of NH3 desorption (s−1)

r ox :

Rate of NH3 SCO (s−1)

r NO :

Rate of NH3 consumption in standard SCR (s−1)

\(r_{{{\text{NO}}_{x} }}\) :

Rate of NH3 consumption in standard SCR (s−1)

k 0 a :

Pre-exponential factor for NH3 adsorption rate constant (m3 mol−1 s−1)

k 0 d :

Pre-exponential factor for NH3 desorption rate constant (s−1)

k 0 ox :

Pre-exponential factor for NH3 SCO rate constant (s−1)

k 0 NO :

Pre-exponential factor for standard SCR rate constant (m3 mol−1 s−1)

E a :

Activation energy for NH3 adsorption (J mol−1)

E d :

Activation energy for NH3 desorption (J mol−1)

E ox :

Activation energy for NH3 SCO (J mol−1)

E NO :

Activation energy for standard SCR (J mol−1)

R :

Ideal gas constant (J mol−1 K−1)

u :

Interstitial gas velocity (m s−1)

z :

Reactor axial coordinate (m)

α :

Parameter for surface coverage dependence

σ :

Parameter for surface coverage dependence

β :

Parameter for surface coverage dependence

ɛ :

Void fraction of the catalyst bed

Ω :

Catalyst NH3 adsorption capacity (molNH3 m−3) \(\varOmega_{{{\text{NH}}_{ 3} }} = \left[ {\left( {1 - \varepsilon } \right)/\varepsilon } \right] \cdot \varOmega^{'}\)

References

  1. V.I. Pârvulescu, P. Grangeb, B. Delmon, Catal. Today 46, 233–316 (1998)

    Article  Google Scholar 

  2. G. Busca, L. Lietti, G. Ramisa, F. Berti, Appl. Catal. B 18, 1–36 (1998)

    Article  CAS  Google Scholar 

  3. E. Hums, Japanese know-how comprises basic invention of DeNO x and processes jointly made with Mitsubishi Petrochemical Company Ltd., Hitachi Ltd. and Babcock Hitachi Kabushiki Kaisha licensed by Catalysts & Chemicals Industries Co. Ltd. (1986)

  4. S. Xiong, X. Xiao, Y. Liao, H. Dang, W. Shan, S. Yang, Ind. Eng. Chem. Res. 54, 11011–11023 (2015)

    Article  CAS  Google Scholar 

  5. M. Calatayud, B. Mguig, C. Minot, Surf. Sci. Rep. 55, 169–236 (2004)

    Article  CAS  Google Scholar 

  6. E. Hums, Catal. Today 42, 25–35 (1998)

    Article  CAS  Google Scholar 

  7. M.D. Amiridis, I.E. Wachs, G. Deo, J.M. Jehng, D.S. Kim, J. Catal. 161, 247–253 (1996)

    Article  CAS  Google Scholar 

  8. G.C. Bond, K. Bruckman, J. Chem. Soc. Faraday Discuss. 72, 235–246 (1981)

    Article  Google Scholar 

  9. I.E. Wachs, R.Y. Saleh, S.S. Chan, C.C. Cherisch, Appl. Catal. 15, 339–352 (1985)

    Article  CAS  Google Scholar 

  10. P. Forzatti, Appl. Catal. A 222, 221–236 (2001)

    Article  CAS  Google Scholar 

  11. M.A. Reiche, P. Hug, A. Baiker, J. Catal. 192, 400–411 (2000)

    Article  CAS  Google Scholar 

  12. S.T. Cjoo, S.D. Yim, I.S. Nam, S.W. Ham, J.B. Lee, Appl. Catal. B 44, 237–252 (2003)

    Article  Google Scholar 

  13. M.C. Paganini, L. Dall’Acqua, E. Giamello, L. Lietti, J. Catal. 166, 195–205 (1997)

    Article  CAS  Google Scholar 

  14. J.A. Odriozola, H. Heinemann, G.A. Somorjai, J.F. Garcia De La Banda, P. Pereira, J. Catal. 119, 71–82 (1989)

    Article  CAS  Google Scholar 

  15. M. Kleemann, M. Elsener, M. Koebel, A. Wokaun, Appl. Catal. B 27, 231–242 (2000)

    Article  CAS  Google Scholar 

  16. I. Makoto, M. Akira, M. Yuichi, J. Catal. 62, 140–148 (1980)

    Article  Google Scholar 

  17. I. Makoto, M. Akira, U. Toshiaki, K. Kan, M. Yuichi, Ind. Eng. Chem. Prod. Res. Dev. 21, 424–428 (1982)

    Article  Google Scholar 

  18. J.P. Chen, R.T. Yang, J. Catal. 125, 411–420 (1990)

    Article  CAS  Google Scholar 

  19. J.A. Dumesic, N.Y. Topsøe, H. Topsøe, Y. Chen, T. Slabiak, J. Catal. 163, 409–417 (1996)

    Article  CAS  Google Scholar 

  20. L. Lietti, I. Nova, S. Camurri, E. Tronconi, P. Forzatti, AIChE J. 43, 2559–2570 (1997)

    Article  CAS  Google Scholar 

  21. L. Lietti, G. Ramis, F. Berti, G. Toledo, D. Robba, G. Busca, P. Forzatti, Catal. Today 42, 101–116 (1998)

    Article  CAS  Google Scholar 

  22. I. Nova, M. Colombo, E. Tranconi, Oil & Gas Science and Technology—Rev. IFP Energies nouvelles, Vol. 66, No. 4, pp. 681–691 (2011)

  23. S.M. Lee, S.S. Kim, S.C. Hong, Chem. Eng. Sci. 79, 177–185 (2012)

    Article  CAS  Google Scholar 

  24. G. Tuenter, W.F. Leeuwen, L.J.M. Snepvangers, Ind. Eng. Chem. Prod. Res. Dev. 25, 633–636 (1986)

    Article  CAS  Google Scholar 

  25. J. Marangozis, Ind. Eng. Chem. Res. 31, 987–994 (1992)

    Article  CAS  Google Scholar 

  26. H.G. Lintz, T. Turek, Appl. Catal. A 85, 13–25 (1992)

    Article  CAS  Google Scholar 

  27. L.J. Pinoy, L.H. Hosten, Catal. Today 17, 151–158 (1993)

    Article  CAS  Google Scholar 

  28. V. Tufano, M. Turco, Appl. Catal. B 2, 9–26 (1993)

    Article  CAS  Google Scholar 

  29. C.U.I. Odenbrand, A. Bahamonde, P. Avila, J. Blanco, Appl. Catal. B 5, 117–131 (1994)

    Article  Google Scholar 

  30. R. Willi, B. Roduit, R.A. Koeppel, A. Wokaun, A. Baiker, Chem. Eng. Sci. 51, 2897–2902 (1996)

    Article  CAS  Google Scholar 

  31. B. Roduit, A. Wokaun, A. Baiker, Ind. Eng. Chem. Res. 37, 4577–4590 (1998)

    Article  CAS  Google Scholar 

  32. S.Y. Chen, P. Chen, Y.W. Li, J.G. Wang, Kinetics of catalytic reactions (Chemical Industry Press, Beijing, 2007), pp. 154–155

    Google Scholar 

  33. X. Xie, J. Lu, E. Hums, Q. Huang, Z. Lu, Energy Fuels 29(6), 3890–3896 (2015)

    Article  CAS  Google Scholar 

  34. D.E. Mears, Chem. Process Des. Dev. 10, 541–547 (1971)

    Article  CAS  Google Scholar 

  35. E. Tronconi, L. Lietti, P. Forzatti, S. Malloggi, Chem. Eng. Sci. 51, 2965–2970 (1996)

    Article  CAS  Google Scholar 

  36. I. Nova, L. dall’Acqua, L. Lietti, E. Giamello, P. Forzatti, Appl. Catal. B 35, 31–42 (2001)

    Article  CAS  Google Scholar 

  37. I. Nova, L. Lietti, E. Tronconi, P. Forzatti, Chem. Eng. Sci. 56, 1229–1237 (2001)

    Article  CAS  Google Scholar 

  38. M. Koebel, G. Madia, F. Raimondi, A. Wokaun, J. Catal. 209, 159–165 (2002)

    Article  CAS  Google Scholar 

  39. I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Catal. Today 114, 3–12 (2006)

    Article  CAS  Google Scholar 

  40. C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, M. Weibel, B. Krutzsch, Appl. Catal. B 70, 80–90 (2007)

    Article  CAS  Google Scholar 

  41. E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, M. Weibel, J. Catal. 245, 1–10 (2007)

    Article  CAS  Google Scholar 

  42. I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, M. Weibel, AIChE J. 55, 1514–1529 (2009)

    Article  CAS  Google Scholar 

  43. S.K. Wilkinson, Thesis of doctorate in Engineering, University of Birmingham UK (2014)

Download references

Acknowledgments

The catalyst samples and FTIR gas analyzer were supplied by the Electric Power Research Institute of Guangdong Power Grid Corporation. We thank their valuable help through this research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erich Hums or Jidong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Hums, E. & Lu, J. Impact of the surface heterogeneity of commercial V2O5–WO3/TiO2 catalysts on the NH3–SCR–DeNO x reaction by kinetic modelling. Res Chem Intermed 43, 1409–1428 (2017). https://doi.org/10.1007/s11164-016-2706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2706-5

Keywords

Navigation