Cyclodextrin nanosponges: a potential catalyst and catalyst support for synthesis of xanthenes

Abstract

The nanoporous framework of a cyclodextrin nanosponge was used as catalyst for accelerating the one-pot, three-component reaction of dimedone, aldehyde, and phenols for synthesis of xanthene derivatives. Moreover, the nanocavities of cyclodextrin nanosponges were exploited for immobilization of heteropolyacids through the wet impregnation method. This catalyst exhibited superior catalytic performance compared to the bare cyclodextrin nanosponge. Despite the good catalytic activity, the leaching of the catalytic species did not allow efficient recovery and reusability. To circumvent this problem, the cyclodextrin nanosponge was amine-functionalized prior to heteropolyacid immobilization. The results proved that the amine functionalities had an effective role in preserving the catalytic species and improving the reusability through decreasing the leaching time. This catalyst was used for synthesis of a variety of xanthenes in aqueous media. The catalytic amount of catalyst afforded the desired product in excellent yields and with a relatively short reaction time. The results suggested cyclodextrin nanosponge-based catalysts as potential candidates for promoting chemical reactions.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 3

References

  1. 1.

    G. Tejashri, B. Amrita, J. Darshana, Acta Pharm. 63, 335 (2013)

    CAS  Article  Google Scholar 

  2. 2.

    F. Trotta, in Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications, ed. by E. Bilensoy (Wiley, Hoboken, 2011), p. 323

    Google Scholar 

  3. 3.

    S. Anandam, S. Selvamuthukumar, J. Mater. Sci. 49, 8140 (2014)

    CAS  Article  Google Scholar 

  4. 4.

    P. Shende, K. Deshmukh, F. Trotta, F. Caldera, Int. J. Pharm. 456, 95 (2013)

    CAS  Article  Google Scholar 

  5. 5.

    S. Torne, S. Darandale, P. Vavia, F. Trotta, R. Cavalli, Pharm. Dev. Technol. 18, 619 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    M. Shringirishi, S.K. Prajapati, A. Mahor, S. Alok, P. Yadav, A. Verma, Asian. Pac. J. Trop. Dis. 4, S519 (2014)

    CAS  Article  Google Scholar 

  7. 7.

    M. Arkas, R. Allabashi, D. Tsiourvas, E.-M. Mattausch, R. Perfle, Environ. Sci. Technol. 40, 2771 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    G. Cravotto, E.C. Calcio Gaudino, S. Tagliapietra, D. Carnaroglio, A. Procopio, Green Process. Synth. 1, 269 (2012)

    CAS  Google Scholar 

  9. 9.

    P. Cintas, G. Cravotto, E.C. Gaudino, L. Orio, L. Boffa, Catal. Sci. Technol. 2, 85 (2012)

    CAS  Article  Google Scholar 

  10. 10.

    G. Di Nardo, C. Roggero, S. Campolongo, F. Valetti, F. Trotta, G. Gilardi, Dalton Trans. 7, 6507 (2009)

  11. 11.

    B. Boscolo, F. Trotta, E. Ghibaudi, J. Mol. Catal. B Enzym. 62, 155 (2010)

    CAS  Article  Google Scholar 

  12. 12.

    A. Gharib, L. Vojdani Fard, N.N. Pesyan, M. Roshani, Chem. J. 1, 58 (2015)

    Google Scholar 

  13. 13.

    J.M. Khurana, D. Magoo, K. Aggarwal, N. Aggarwal, R. Kumar, C. Srivastava, Eur. J. Med. Chem. 58, 470 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    J.M. Jamison, K. Krabill, A. Hatwalkar, Cell Biol. Int. Rep. 14, 1075 (1990)

    CAS  Article  Google Scholar 

  15. 15.

    R.M. Ion, D. Frackowiak, K. Wiktorowicz, Acta Biochim. Pol. 45, 833 (1998)

    CAS  Google Scholar 

  16. 16.

    O. Evangelinou, A.G. Hatzidimitriou, E. Velalib, A.A. Pantazaki, N. Voulgarakis, P. Aslanidis, Polyhedron 72, 122 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    O. Sirkecioglu, N. Talinli, A. Akar, J. Chem. Res. 502 (1995)

  18. 18.

    P. Bansal, G.R. Chaudhary, N. Kaur, S.K. Mehta, RSC Adv. 5, 8205 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    G.R. Chaudhary, P. Bansal, N. Kaur, S.K. Mehta, RSC Adv. 4, 49462 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    M.M. Heravi, H. Alinejhad, K. Bakhtiari, M. Saeedi, H.A. Oskooie, F.F. Bamoharram, Bull. Chem. Soc. Ethiop. 25, 399 (2011)

    CAS  Google Scholar 

  21. 21.

    K. Rad-Moghadam, S.K. Azimi, J. Mol. Catal. A: Chem. 363–364, 465 (2012)

    Article  Google Scholar 

  22. 22.

    N.G. Khaligh, Ultrason. Sonochem. 19, 736 (2012)

    CAS  Article  Google Scholar 

  23. 23.

    M.M. Heravi, S. Sadjadi, J. Iran. Chem. Soc. 6, 1 (2009)

    CAS  Article  Google Scholar 

  24. 24.

    E. Rafiee, F. Mirnezami, J. Mol. Liq. 199, 156 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    K. Pamin, M. Pronczuk, S. Basąg, W. Kubiak, Z. Sojka, J. Połtowicz, Inorg. Chem. Commun. 59, 13 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    S. Tsubaki, K. Oono, T. Ueda, A. Onda, K. Yanagisawa, T. Mitani, J.-I. Azuma, Bioresour. Technol. 144, 67 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    A. Srivani, P.S. Sai Prasad, N. Lingaiah, Catal. Lett. 142, 389 (2012)

    CAS  Article  Google Scholar 

  28. 28.

    S. Swaminathan, L. Pastero, L. Serpe, F. Trotta, P. Vavia, D. Aquilano, M. Trotta, G.P. Zara, R. Cavalli, Eur. J. Pharm. Biopharm. 74, 193 (2010)

    CAS  Article  Google Scholar 

  29. 29.

    R. Cavalli, F. Trotta, W. Tumiatti, J. Incl. Phenom. 56, 209 (2006)

    CAS  Article  Google Scholar 

  30. 30.

    F. Trotta, R. Cavalli, K. Martina, M. Biasizzo, J. Vitillo, S. Bordiga, P. Vavia, K. Ansari, J. Incl. Phenom. Macrocycl. Chem. 71, 189 (2011)

    CAS  Article  Google Scholar 

  31. 31.

    G. Mohammadi Ziarani, A.-R. Badiei, M. Azizi, Sci. Iran. 18, 453 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate partial financial support from Iran Polymer and Petrochemical Institute and Alzahra University. MMH is also thankful to INSF for financial support given under cover of given individual grant.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Samahe Sadjadi or Majid M. Heravi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadjadi, S., Heravi, M.M. & Daraie, M. Cyclodextrin nanosponges: a potential catalyst and catalyst support for synthesis of xanthenes. Res Chem Intermed 43, 843–857 (2017). https://doi.org/10.1007/s11164-016-2668-7

Download citation

Keywords

  • Heteropolyacids
  • Cyclodextrin nanosponge
  • Heterogeneous catalyst
  • Xanthenes