Skip to main content
Log in

Synthesis of N and F co-doped TiO2 nanophotocatalysts for degradation of malathion in water

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

N and F codoped nanophotocatalysts were synthesized by sol–gel method and their photocatalytic activity were studied for the degradation of insecticide malathion. Photocatalysts were characterised by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscope and micro Raman spectroscopy to determine the structural, morphological properties and phase composition. The particle size calculated by XRD are in agreement with the measured value by TEM. Band gap calculated by absorption spectra shows a shift in the absorption edge towards longer wavelength side. Photoluminescence spectra show emission behaviour of synthesized photocatalysts. In comparison with undoped TiO2, N, F codoped particles exhibits higher photocatalytic activity due to generation of more reactive oxidative species (ROS). Mechanism of ROS generation is graphically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.K. Singh, R.S. Singh, P.N. Tiwari, J.K. Singh, F. Gode, Y.C. Sharma, Removal of malathion from aqueous solutions and waste water using fly ash. J. Water. Resour. Prot. 2, 322–330 (2010)

    Article  CAS  Google Scholar 

  2. N.A. Ramos-Delgado, L. Hinojosa-Reyes, I.L. Guzman-Mar, M.A. Gracia-Pinilla, A. Hernandez-Ramirez, Synthesis by sol–gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide. Catal. Today 209, 35–40 (2013)

    Article  CAS  Google Scholar 

  3. R. Kumar, N.S. Nagpure, B. Kushwaha, S.K. Srivastava, W.S. Lakra, Investigation of the genotoxicity of malathion to freshwater teleost fish Channa punctatus (bloch) using the micronucleus test and comet assay. Arch. Environ. Contam. Toxicol. 58, 123–130 (2010)

    Article  CAS  Google Scholar 

  4. H. Yu, X. Wang, H. Sun, M. Huo, Photocatalytic degradation of malathion in aqueous solution using a Au–Pd–TiO2 nanotube film. J. Hazard. Mater. 184, 753–758 (2010)

    Article  CAS  Google Scholar 

  5. E.M. Samsudin, S.B. AbdHamid, J.C. Juan, W.J. Basirun, G. Centi, Enhancement of the intrinsic photocatalytic activity of TiO2 in the degradation of 1,3,5-triazine herbicides by doping with N, F. Chem. Eng. J. 280, 330–343 (2015)

    Article  CAS  Google Scholar 

  6. W. Zhang, X. Li, G. Jia, Y. Gao, H. Wang, Z. Cao, C. Li, J. Liu, Preparation, characterization, and photocatalytic activity of boron and lanthanum co-doped TiO2. Catal. Commun. 45, 144–147 (2014)

    Article  CAS  Google Scholar 

  7. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem. Rev. 114, 9824–9852 (2014)

    Article  CAS  Google Scholar 

  8. K. Nakataa, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol., C 13, 169–189 (2012)

    Article  Google Scholar 

  9. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile?—model studies on epitaxial TiO2 films. Sci. Rep. 4, 4043 (2014)

    Article  Google Scholar 

  10. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P.Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO2. Nat. Mater. J. 12(9), 798–801 (2013)

  11. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, K.M. Garadkar, “Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of malathion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 133, 669–676 (2014)

    Article  CAS  Google Scholar 

  12. J. Li, B. Li, J. Li, J. Liu, L. Wang, H. Zhang, Z. Zhang, B. Zhao, Visible-light-driven photocatalyst of La–N-codoped TiO2 nano-photocatalyst: fabrication and its enhanced photocatalytic performance and mechanism. J. Ind. Eng. Chem. 25, 16–21 (2015)

    Article  CAS  Google Scholar 

  13. V.S. Priya, L. Philip, Photocatalytic degradation of aqueous VOCs using N doped TiO2: comparison of photocatalytic degradation under visible and sunlight irradiation. Int. J. Environ. Sci. Dev. 6(4), 286 (2015)

  14. M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185 (2011)

    Article  CAS  Google Scholar 

  15. C. Di Valentin, G. Pacchioni, Trends in non-metal doping of anatase TiO2: B, C, N and F. Catal. Today 206, 12–18 (2013)

    Article  Google Scholar 

  16. C. Di Valentin, G. Pacchioni, A. Selloni, Reduced and n-type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113, 20543–20552 (2009)

    Article  Google Scholar 

  17. E.O. Oseghe, P.G. Ndungu, S.B. Jonnalagadda, Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid using W-doped TiO2. J. Photochem. Photobiol., A 312, 96–106 (2015)

    Article  CAS  Google Scholar 

  18. S.A.K. Leghari, S. Sajjad, F. Chen, J. Zhang, WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem. Eng. J. 166, 906–915 (2011)

    Article  CAS  Google Scholar 

  19. R. Kumari, A. Sahai, N. Goswami, Effect of nitrogen doping on structural and optical propertiesof ZnO nanoparticles. Prog. Nat. Sci. Mater. Int. 25, 300–309 (2015)

    Article  CAS  Google Scholar 

  20. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001)

    Article  CAS  Google Scholar 

  21. K. Yang, Y. Dai, B. Huang, M.H. Whangbo, Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chem. Mater. 20, 6528–6534 (2008)

    Article  CAS  Google Scholar 

  22. A.M. Czoska, S. Livraghi, M. Chiesa, E. Giamello, S. Agnoli, G. Granozzi, E. Finazzi, C. Di Valentin, G. Pacchioni, The nature of defects in fluorine-doped TiO2. J. Phys. Chem. C 112(24), 8951–8956 (2008)

  23. Y. Wu, M. Xing, B. Tian, J. Zhang, F. Chen, Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. Chem. Eng. J. 162, 710–717 (2010)

    Article  CAS  Google Scholar 

  24. D. Pang, L. Qiu, Y. Wang, R. Zhu, F. Ouyang, Photocatalytic decomposition of acrylonitrile with N–F codoped TiO2/SiO2 under simulant solar light irradiation. J. Environ. Sci. 33, 169–178 (2015)

    Article  Google Scholar 

  25. J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808–3816 (2002)

    Article  CAS  Google Scholar 

  26. G.R. Hearne, J. Zhao, A.M. Dawe, V. Pischedda, M. Maaza, M.K. Nieuwoudt, P. Kibasomba, O. Nemraoui, J.D. Comins, Effect of grain size on structural transitions in anatase TiO2: a Raman spectroscopy study at high pressure. Phys. Rev. B 70, 134102 (2004)

    Article  Google Scholar 

  27. T. Ohsaka, F. Izumi, Y. Fujiki, Raman Spectrum of anatase TiO2. J. Raman Spectrosc. 7(6), 321–324 (1978)

  28. M. Pelaeza, P. Falarasb, V. Likodimosb, A.G. Kontosb, A.A. de la Cruzc, K. Oshead, D.D. Dionysioua, Synthesis, structural characterization and evaluation of sol–gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR. Appl. Catal. B Environ. 99, 378–387 (2010)

    Article  Google Scholar 

  29. R. Chauhan, A. Kumar, R.P. Chaudhary, Photocatalytic degradation of methylene blue with Fe doped ZnS nanoparticles. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 113, 250–256 (2013)

    Article  CAS  Google Scholar 

  30. X. He, W.G. Aker, M. Pelaez, Y. Lin, D.D. Dionysiou, H. Hwang, Assessment of nitrogen fluorine-codoped TiO2 under visible light fordegradation of BPA: implication for field remediation. J. Photochem. Photobiol., A 314, 81–92 (2016)

    Article  CAS  Google Scholar 

  31. D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven N–F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem. Mater. 17, 2596–2602 (2005)

    Article  CAS  Google Scholar 

  32. D. Li, H. Haneda, N.K. Labhsetwar, S. Hishita, N. Ohashi, Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett. 401, 579–584 (2005)

    Article  CAS  Google Scholar 

  33. D. Li, H. Haneda, S. Hishita, N. Ohashi, N.K. Labhsetwar, Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluor. Chem. 126, 69–77 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Director, National Institute of Technology, Kurukshetra for providing characterisation facilities in the department of Physics. We are also thankful to Dr. Vishal Kumar, Head, Centre of Material Science at Natonal Institute of Technology, Hamirpur for providing micro raman facility. The authors, A. K. Srivastava and J. S. Tawale, thank the Director, CSIR—National Physical Laboratory, New Delhi, for providing necessary infrastructural facilities to carry out microstructural characterization. The projects, NanoSHE (BSC-0112) and DST (SR/NM/NS-97/2010), are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashavani Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhamaniya, B.P., Kumar, A., Srivastava, A.K. et al. Synthesis of N and F co-doped TiO2 nanophotocatalysts for degradation of malathion in water. Res Chem Intermed 43, 387–399 (2017). https://doi.org/10.1007/s11164-016-2629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2629-1

Keywords

Navigation