Skip to main content
Log in

Modeling of fixed-bed column studies for removal of cobalt ions from aqueous solution using Chrysanthemum indicum

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The present study investigates the adsorption capability of raw and biochar forms of Chrysanthemum indicum flowers biomass to remove cobalt ions from aqueous solution in a fixed-bed column. Column adsorption experiments were conducted by varying the bed height (1.0, 2.0, 3.0 cm), flow rate (1.0, 2.5, 5.0 mL min−1) and initial cobalt ion concentration (25, 50, 75 mg L−1) to obtain the experimental breakthrough curves. The adsorption capacity of the raw and biochar forms of C. indicum flowers were found to be 14.84 and 28.34 mg g−1, respectively, for an initial ion concentration of 50 mg L−1 at 1.0 cm bed height and 1.0 mL min−1 flow rate for Co (II) ion adsorption. Adam–Bohart, Thomas and Yoon–Nelson models were applied to the experimental column data to analyze the column performance. The Thomas model was found to best represent the column data with the predicted and experimental uptake capacity values correlating well and with higher R 2 values for all the varying process parameters. Desorption studies revealed the suitability of the adsorbents for repeated use up to four adsorption–desorption cycles without significant loss in its efficiency. It can thus be inferred from the fixed-bed column studies that C. indicum flowers can suitably be used as an effective adsorbent for Co (II) ion removal from aqueous solution on a higher scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.K. Rai, Crit. Rev. Environ. Sci. Technol. 39, 697 (2009)

  2. H.N. Bhatti, A. Saleem, M.A. Hanif, Desalin. Water Treat. 51, 3335 (2013)

    Article  CAS  Google Scholar 

  3. B. Volesky, Z.R. Holan, Biotechnol. Prog. 11, 235 (1995)

    Article  CAS  Google Scholar 

  4. S. Rengaraj, S.-H. Moon, Water Res. 36, 1783 (2002)

    Article  CAS  Google Scholar 

  5. M. Abbas, S. Kaddour, M. Trari, J. Ind. Eng. Chem. 20, 745 (2014)

    Article  CAS  Google Scholar 

  6. C. Caramal, L. Bulgariu, M. Macoveanu, Chem. Bull. “POLITEHNICA” Univ. Timisoara 54, 13 (2009)

  7. L. Tofan, C. Teodosiu, C. Paduraru, R. Wenkert, Appl. Surf. Sci. 285, 33 (2013)

    Article  CAS  Google Scholar 

  8. F.-M. Pellera, A. Giannis, D. Kalderis, K. Anastasiadou, R. Stegmann, J.-Y. Wang, E. Gidarakos, J. Environ. Manag. 96, 35 (2012)

    Article  CAS  Google Scholar 

  9. B. Volesky, Hydrometallurgy 59, 203 (2001)

    Article  CAS  Google Scholar 

  10. D. Sud, G. Mahajan, M. Kaur, Bioresour. Technol. 99, 6017 (2008)

    Article  CAS  Google Scholar 

  11. S. Vilvanathan, S. Shanthakumar, Process Saf. Environ. Prot. 96, 98 (2015)

    Article  CAS  Google Scholar 

  12. S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Bioresour. Technol. 113, 114 (2012)

    Article  CAS  Google Scholar 

  13. J. Rodriguez-Carvajal, Match! Phase Identification from Powder Diffraction (2016)

  14. L. Mangaleshwaran, A. Thirulogachandar, V. Rajasekar, C. Muthukumaran, K. Rasappan, J. Taiwan Inst. Chem. Eng. 55, 112 (2015)

    Article  Google Scholar 

  15. S. Sadaf, H.N. Bhatti, J. Taiwan Inst. Chem. Eng. 45, 541 (2014)

    Article  CAS  Google Scholar 

  16. K. Vijayaraghavan, J. Jegan, K. Palanivelu, M. Velan, Sep. Purif. Technol. 44, 53 (2005)

    Article  CAS  Google Scholar 

  17. X. Xu, B. Gao, X. Tan, X. Zhang, Q. Yue, Y. Wang, Q. Li, Chem. Eng. J. 226, 1 (2013)

    Article  CAS  Google Scholar 

  18. R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng, M. Tang, Desalination 245, 284 (2009)

    Article  CAS  Google Scholar 

  19. J. Cruz-Olivares, C. Pérez-Alonso, C. Barrera-Díaz, F. Ureña-Nuñez, M.C. Chaparro-Mercado, B. Bilyeu, Chem. Eng. J. 228, 21 (2013)

    Article  CAS  Google Scholar 

  20. G. Bohart, E. Adams, J. Am. Chem. Soc. 42, 523 (1920)

    Article  CAS  Google Scholar 

  21. E.D. Woumfo, J.M. Siéwé, D. Njopwouo, J. Environ. Manag. 151, 450 (2015)

    Article  CAS  Google Scholar 

  22. R. Sharma, B. Singh, Bioresour. Technol. 146, 519 (2013)

    Article  CAS  Google Scholar 

  23. H.C. Thomas, J. Am. Chem. Soc. 66, 1664 (1944)

    Article  CAS  Google Scholar 

  24. J. Samuel, M. Pulimi, M.L. Paul, A. Maurya, N. Chandrasekaran, A. Mukherjee, Bioresour. Technol. 128, 423 (2013)

    Article  CAS  Google Scholar 

  25. S. Qaiser, A.R. Saleemi, M. Umar, J. Hazard. Mater. 166, 998 (2009)

    Article  CAS  Google Scholar 

  26. K.Y. Foo, L.K. Lee, B.H. Hameed, Bioresour. Technol. 133, 599 (2013)

    Article  CAS  Google Scholar 

  27. X. Sun, T. Imai, M. Sekine, T. Higuchi, K. Yamamoto, A. Kanno, S. Nakazono, J. Ind. Eng. Chem. 20, 3623 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank VIT University for providing Atomic Absorption Spectroscopy (AAS) facility to perform metal concentration analysis and the Department of Chemistry, IIT Madras, Chennai, for providing the facility to carry out the Powder XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shanthakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilvanathan, S., Shanthakumar, S. Modeling of fixed-bed column studies for removal of cobalt ions from aqueous solution using Chrysanthemum indicum . Res Chem Intermed 43, 229–243 (2017). https://doi.org/10.1007/s11164-016-2617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2617-5

Keywords

Navigation