Skip to main content
Log in

Vanadium–Schiff base complex-functionalized SBA-15 as a heterogeneous catalyst: synthesis, characterization and application in pharmaceutical sulfoxidation of sulfids

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

VO2(picolinichydrazone) complex as a catalyst was stabilized on a SBA-15 mesoporous silica as a catalytic support by using (3-chloropropyl)triethoxysilane as a connector. SBA-15 is nanoporous and has a high ratio of surface area to volume. The immobilization of a metal–Schiff base complex to the surface area of SBA-15 can improve its catalytic effects by increasing the catalytic surface area. Unlike homogeneous catalysts, heterogeneous catalysts can be recovered and reused several times without any significant loss of catalytic activity. A vanadium–Schiff base complex-functionalized SBA-15 was synthesized by covalency connected by a pre-synthesised VO2(picolinichydrazone) complex to silanated SBA-15. The synthesized vanadium–Schiff base complex was characterized by proton nuclear magnetic resonance (1H NMR) spectroscopy, carbon nuclear magnetic resonance (13C NMR) spectroscopy and Fourier transform infrared spectroscopy (FT-IR), and the final V/SBA-15 was characterized by FT-IR, ultraviolet–visible spectrophotometry and X-ray powder diffraction. The morphology of V/SBA-15 was also obtained by scanning electron microscopy and transmission electron microscopy. The catalytic effect was examined by using V/SBA-15 as a heterogeneous catalyst in sulfoxidation reactions. The synthesis of modafinil and modafinic acid by pharmaceutical sulfoxidation of solfides was carried out and the effects of different solvents, reaction times and also recoverability and reusability of the heterogeneous catalyst were investigated. This catalyst showed high yield of sulfide conversion, stability and recyclability in the sulfoxidation of sulfides .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 5
Fig. 8

Similar content being viewed by others

References

  1. A.P. Wight, M.E. Davis, Design and preparation of organic-inorganic hybrid catalysts. Chem. Rev. 102, 3589 (2002)

    Article  CAS  Google Scholar 

  2. R. Breslow, Artificial enzymes. Science 218, 532 (1982)

    Article  CAS  Google Scholar 

  3. Y. Wan, D.Y. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007)

    Article  CAS  Google Scholar 

  4. C. Nozaki, C.G. Lugmair, A.T. Bell, T.D. Tilley, Synthesis, characterization, and catalytic performance of single-site Iron(III) centers on the surface of SBA-15 silica. J. Am. Chem. Soc. 124, 13194–13203 (2002)

    Article  CAS  Google Scholar 

  5. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  6. J.Y. Ying, C.P. Mehnert, M.S. Wong, Synthesis and applications of supramoleculartemplated mesoporous materials. Angew. Chem. Int. Ed. 38, 56–77 (1999)

    Article  CAS  Google Scholar 

  7. F. Schüth, Non-siliceous mesostructured and mesoporous materials. Chem. Mater. 13, 3184–3195 (2001)

    Article  Google Scholar 

  8. Y. Wan, D.Y. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007)

    Article  CAS  Google Scholar 

  9. A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1–45 (2005)

    Article  CAS  Google Scholar 

  10. A. Corma, Frommicroporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997)

    Article  CAS  Google Scholar 

  11. W.J.J. Stevens, K. Lebeau, M. Mertens, G. van Tendeloo, P. Cool, E.F. Vansant, Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials. J. Phys. Chem. B 110, 9183–9187 (2006)

    Article  CAS  Google Scholar 

  12. R. Palcheva, A. Spojakina, L. Dimitrov, K. Jiratova, Tungstophosphoricheteropolyacid supported on modified SBA-15 as catalyst in HDS of thiophene. Microporous Mesoporous Mater. 122, 128–134 (2009)

    Article  CAS  Google Scholar 

  13. B. Kesanli, W. Lin, Mesoporous silica anchored Ru catalysts for highly enantioselective hydrogenation of b-ketoesters. Chem. Commun. 20, 2284–2285 (2004)

    Article  Google Scholar 

  14. N. Rahmat, A.A. Zuhairi, A.R. Mohamed, A review: mesoporous santabarbara amorphous-15, types, synthesis and its applications towards biorefinery production. Am. J. Appl. Sci. 7, 1579–1586 (2010)

    Article  CAS  Google Scholar 

  15. S.L. Jain, B.S. Rana, B. Singh, A.K. Sinha, A. Bhaumik, M. Nandi, B. Sain, An improved high yielding immobilization of vanadium Schiff base complexes on mesoporous silica via azide–alkyne cycloaddition for the oxidation of sulfides. Green Chem. 12, 374–377 (2010)

    Article  CAS  Google Scholar 

  16. M.R. Maurya, A.K. Chandrakar, S. Chand, Oxidation of phenol, styrene and methyl phenyl sulfide with H2O2 catalysed by dioxovanadium(V) and copper(II) complexes of 2-aminomethylbenzimidazole-based ligand encapsulated in zeolite-Y. J. Mol. Catal. A: Chem. 263, 227–237 (2007)

    Article  CAS  Google Scholar 

  17. A.S. Kerstin, M.W. Katharina, B.T. Svetlana, Asymmetric vanadium- and iron-catalyze d oxidations: new mild (R)-modafinil synthesis and formation of epoxides using aqueous H2O2 as a terminal oxidant. Tetrahedron 68, 8493–8501 (2012)

    Article  Google Scholar 

  18. K. Srinivasan, P. Michaud, J.K. Kochi, Epoxidation of olefins with cationic (salen) manganese(III) complexes. The modulation of catalytic activity by substituents. J. Am. Chem. Soc. 108, 2309–2320 (1986)

    Article  CAS  Google Scholar 

  19. E.J. Baran, Oxovanadium(IV) and oxovanadium(V) complexes relevant to biological systems. J. Inorg. Biochem. 80, 1–2 (2000)

    Article  CAS  Google Scholar 

  20. F. Velde, I.W.C.E. Arends, R.A.J. Sheldon, Biocatalytic and biomimetic oxidations with vanadium. J. Inorg. Biochem. 80, 81–89 (2000)

    Article  Google Scholar 

  21. M. Wang, L.F. Wang, Y.Z. Li, Q.X. Li, Z.D. Xu, D.Q. Qu, Synthesis, spectroscopic and antimicrobial studies of binuclear transition metal complexes with tetradentate Schiff base. Transit. Met. Chem. 26, 307–310 (2001)

    Article  CAS  Google Scholar 

  22. X.D. Zhu, C.G. Wang, Y.L. Dang, H.B. Zhou, Z.S. Wu, Z.J. Liu, D.L. Ye, Q.C. Zhou, The Schiff base N-salicylidene-O, S-dimethylthiophosphorylimine and its metal complexes: synthesis, characterization and insecticidal activity studies. Synth. React. Inorg. Met.-Org. Chem. 30, 625–636 (2000)

    Article  CAS  Google Scholar 

  23. H. Zhang, Y. Zhang, C. Li, Enantioselectiveepoxidation of olefins catalyzed by the Mn(salen) catalysts immobilized in the nanopores of mesoporous materials. J. Catal. 238, 369–381 (2006)

    Article  CAS  Google Scholar 

  24. J. Wen, J. Zhao, X. Wang, J. Dong, T. You, Asymmetric pinacol coupling reaction catalyzed by dipeptide-type Schiff bases. J. Mol. Catal. A: Chem. 245, 242–247 (2006)

    Article  CAS  Google Scholar 

  25. J. Mao, N. Li, H. Li, X. Hu, Novel Schiff base complexes as catalysts in aerobic selective oxidation of b-isophorone. J. Mol. Catal. A: Chem. 258, 178–184 (2006)

    Article  CAS  Google Scholar 

  26. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50–300 Angstrom pores. Science 279, 548–552 (1998)

    Article  CAS  Google Scholar 

  27. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Continuous mesoporous silica films with highly ordered large pore structures. J. Am. Chem. Soc. 120, 6024 (1998)

    Article  CAS  Google Scholar 

  28. L. Saikia, D. Srinivas, P. Ratnasamy, Chemo-, regio- and stereo-selective aerial oxidation of limonene to the endo-1,2-epoxide over Mn(Salen)-sulfonated SBA-15. Appl. Catal. A: Gen. 309, 144–154 (2006)

    Article  CAS  Google Scholar 

  29. D.P. Quintanilla, I. Hierro, M. Fajardo, I. Sierra, Preparation of 2 mercaptobenzothiazole-derivatized mesoporous silica and removal of Hg(II) from aqueous solution. J. Environ. Monit. 8, 214–222 (2006)

    Article  Google Scholar 

  30. Y. Li, B. Yan, H. Yang, Construction, characterization, and photoluminescence of mesoporous hybrids containing europium(III) complexes covalently bonded to SBA-15 directly functionalized by modified β-diketone. J. Phys. Chem. C 112, 3959–3968 (2008)

    Article  CAS  Google Scholar 

  31. D. Pérez-Quintanilla, A. Sánchez, I. del Hierro, M. Fajardo, I. Sierra, Preconcentration of Zn(II) in water samples using a new hybrid SBA-15-based material. J. Hazard. Mater. 166, 1449–1458 (2009)

    Article  Google Scholar 

  32. B. Karimi, M. Ghoreishi-Nezhad, J.H. Clark, Selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide catalyzed with a recoverable silica-based tungstate interphase catalyst. Org. Lett. 7, 625–628 (2005)

    Article  CAS  Google Scholar 

  33. T.S. Smith, V.L. Pecoraro, Oxidation of organic sulfides by vanadium haloperoxidase model complexes. J. Inorg. Chem. 41, 6754–6760 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Taghizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, M.J., Karimi, H. & Abandansari, H.S. Vanadium–Schiff base complex-functionalized SBA-15 as a heterogeneous catalyst: synthesis, characterization and application in pharmaceutical sulfoxidation of sulfids. Res Chem Intermed 42, 8201–8215 (2016). https://doi.org/10.1007/s11164-016-2589-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2589-5

Keywords

Navigation