Skip to main content
Log in

In situ ultrasonic measurements: a powerful tool to control the synthesis of zeolites from coal fly ash

Research on Chemical Intermediates Aims and scope Submit manuscript

Cite this article

Abstract

An in situ ultrasonic diagnostic technique was applied to monitoring the hydrothermal synthesis of zeolite A and X of clear solution extracted from alkaline fused class F coal fly ash. In this context, kinetic evaluations based on in situ ultrasonic diagnostic data displayed an important approach to study the synthesis process. The impact on nucleation and crystal growth was demonstrated by variation of a few relevant parameters such as reaction temperature, amount of water, Na2O and ageing time, including templated colloidal synthesis mixtures as model solution. To complement the kinetic analysis, ex situ techniques such as ICP, X-ray diffraction, scanning electron microscopy and dynamic light scattering were used to investigate liquid phase and reaction products extracted from the reaction mixture during the synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S.S. Bukhari, J. Behin, H. Kazemian, S. Rohani, Fuel 140, 250–266 (2015)

    Article  CAS  Google Scholar 

  2. R.S. Blissett, N.A. Rowson, Fuel 97, 1–23 (2012)

    Article  CAS  Google Scholar 

  3. S. Wang, H. Wu, J. Hazard. Mater. 136(3), 482–501 (2006)

    Article  CAS  Google Scholar 

  4. L. Ding, H. Yang, P. Rahimi, O. Omotoso, W. Friesen, C. Fairbridge, Y. Shi, S. Ng, Microporous Mesoporous Mater. 130, 303–308 (2010)

  5. A. Derkowski, W. Franus, E. Beran, A. Czímerová, Powder Technol. 166, 47–54 (2006)

    Article  CAS  Google Scholar 

  6. E. Hums, A. Inayat, W. Schwieger, in Presentation at the 18th International Zeolite Conference, 2016, Rio de Janeiro, Brazil (accepted)

  7. N. Pienack, W. Bensch, Angew. Chem. Int. Ed. 50, 2014–2034 (2011)

    Article  CAS  Google Scholar 

  8. G. Artioli, R. Grizzetti, L. Carotenntol, C. Piccolo, C. Coletta, B. Lignori, R. Aiello, P. Frontera, Stud. Surf. Sci. Catal. 142, 45–52 (2002)

    Article  Google Scholar 

  9. J. Shi, M.W. Anderson, S.W. Carr, Chem. Mater. 8, 369–375 (1996)

    Article  CAS  Google Scholar 

  10. Z.P. Miladinović, J. Zakrewska, B.T. Kovačević, J.M. Miladinović, Microporous Mesoporous Mater. 195, 131–142 (2014)

    Article  Google Scholar 

  11. Z.P. Miladinović, J. Zakrewska, B.T. Kovačević, G. Bačić, Mater. Chem. Phys. 104, 384–389 (2007)

    Article  Google Scholar 

  12. P. Shama, J. Yeo, M.H. Han, C.H. Cho, RSC Adv. 2, 7809–7823 (2012)

    Article  Google Scholar 

  13. M.W. Anderson, J.R. Agger, N. Hanif, O. Terasaki, Microporous Mesoporous Mater. 48, 1–9 (2001)

    Article  CAS  Google Scholar 

  14. R. Herrmann, W. Schwieger, O. Scharf, C. Stenzel, H. Toufar, M. Schmachtl, B. Ziberi, W. Grill, Microporous Mesoporous Mater. 80, 1–9 (2005)

    Article  CAS  Google Scholar 

  15. W. Schwieger, press release: Kristalle aus dem Rührkessel (Neues Verfahren der Züchtung von Zeolithen) University of Erlangen-Nürnberg, Germany, 03.04.2003 www. uni-protokolle.de.

  16. H. H. Baser, PhD Thesis (2013) In situ Diagnostik von Zeolithbildungsprozessen auf Basis der Messung von Utraschalldämpfung und-geschwindigkeit, Institute of Chemical Reaction Engineering, University of Erlangen - Nürnberg, Germany.

  17. N.M. Musyoka, L. Petrick, E. Hums, H. Baser, W. Schwieger, Catal. Today 190, 38–46 (2012)

    Article  CAS  Google Scholar 

  18. C.S. Cundy, P.A. Cox, Microporous Mesoporous Mater. 82, 1–78 (2005)

    Article  CAS  Google Scholar 

  19. E. Hums, N.M. Musyoka, H. Baser, A. Inayat, W. Schwieger, Res. Chem. Intermed. 41(7), 4311–4326 (2015)

    Article  CAS  Google Scholar 

  20. C. Kosanović, T.A. Jelić, J. Bronić, D. Kraslj, B. Subotić, Microporous Mesoporous Mater. 137, 72–82 (2011)

    Article  Google Scholar 

  21. S. Bosnar, J. Bronić, Ð. Brlek, B. Subotić, Microporous Mesoporous Mater. 142, 389–397 (2011)

    Article  CAS  Google Scholar 

  22. S. Bosnar, T. Antonić-Jelić, J. Bronić, I. Krznarić, B. Subotić, J. Cryst. Growth 267, 270–282 (2004)

    Article  CAS  Google Scholar 

  23. R.W. Thompson, M.J. Huber, J. Cryst. Growth 56, 711–722 (1982)

    Article  CAS  Google Scholar 

  24. C.-S. Yang, J.M. Mora-Fonz, C.R. Catow, J. Phys. Chem. C 117, 24796–24803 (2013)

    Article  CAS  Google Scholar 

  25. H. Baser, J. Selvam, R. Ofili, W. Schwieger in 40th Anniversary of International Zeolite Conference, 2007, pp. 480–486

  26. G.J. Myatt, P.M. Budd, C. Price, F. Hollway, S.W. Carr, Zeolites 14, 190–197 (1994)

    Article  Google Scholar 

  27. S.P. Zhdanov, N.N. Samulevich, in Proceedings of the 5th International Conference on Zeolites, 1980, ed. by L.V.C. Rees, Heyden, London, pp. 75–84

  28. S.P. Zhdanov, S.S. Khvoshchev, N.N. Feokistova, Synthetic Zeolites-Vol. I-Crystallisation (Gordon and Breach, New York, 1990)

    Google Scholar 

  29. S.P. Zhdanov, in Molecular Sieve Zeolites-1, ACS Adv. Chem. Ser. 101, Am. Chem. Soc., 1971 ed. by R.F. Gould, Washington, DC, Cap. 2. pp. 20–43

  30. R.W. Thompson, in Modelling of Structure and Reactivity in Zeolites, ed. by C.R.A. Catlow (Academic Press, London, 1992), pp. 231–255

    Google Scholar 

  31. W.H. Chen, H.C. Hu, T.Y. Lee, Chem. Eng. Sci. 48, 3683–3691 (1993)

    Article  CAS  Google Scholar 

  32. V. Nikolakis, D.G. Vlacho, M. Tsapatsis, Microporous Mesoporous Mater. 21, 337–346 (1998)

    Article  CAS  Google Scholar 

  33. P.C. Hohenberg, B. Halperin, Rev. Mod. Phys. 49, 435–479 (1977)

    Article  CAS  Google Scholar 

  34. M.J. Avrami, J. Chem. Phys. 7, 1103–1112 (1939)

    Article  CAS  Google Scholar 

  35. M.J. Avrami, J. Chem. Phys. 8, 212–224 (1940)

    Article  CAS  Google Scholar 

  36. M.J. Avrami, J. Chem. Phys. 9, 177–184 (1941)

    Article  CAS  Google Scholar 

  37. C.R. Erofeyev, Dokl. Acad. Sci. URSS 52, 511–514 (1946)

    Google Scholar 

  38. G.T. Kerr, J. Phys. Chem. 70(4), 1047–1050 (1966)

    Article  CAS  Google Scholar 

  39. J. Ciric, J. Colloid Interface Sci. 28, 315–323 (1968)

    Article  CAS  Google Scholar 

  40. A. Culfaz, L.B. Sand, Adv. Chem. Ser. 121, 140–151 (1973)

    Article  CAS  Google Scholar 

  41. W. Schwieger, W. Heyer, K.-H. Bergk, Z. Anorg. Allg. Chem. 559, 191–200 (1988)

    Article  CAS  Google Scholar 

  42. I. Krzarić, T. Antonić, B. Subotić, V. Babić-Ivančić, Thermochim. Acta 317, 73–84 (1998)

    Article  Google Scholar 

  43. R.I. Walton, D. O’Hare, J. Phys. Chem. B 105, 91–96 (2001)

    Article  CAS  Google Scholar 

  44. A. Umemura, P. Cubillas, M.W. Anderson, J.R. Agger, Stud. Surf. Sci. Catal. 174, Part A, 705–708 (2008)

  45. P. Cubillas, S.M. Stevens, N. Blake, A. Umemura, C.B. Chong, O. Terasaki, J. Phys. Chem. C 115, 12567–12574 (2011)

    Article  CAS  Google Scholar 

  46. P. Cubillas, M.W. Anderson, Synthesis mechanism: crystal growth and nucleation, in Zeolites and Catalysis, Synthesis, Reactions and Applications, vol. 1, ed. by J. Čejka, A. Corma, S. Zones (Wiley, Weinheim, 2010), pp. 1–55

    Chapter  Google Scholar 

  47. S. Mintova, N.H. Olson, J. Senker, T. Bein, Angew. Chem. Int. Ed. 41, 2558–2561 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted at the University of Erlangen-Nürnberg, Germany, concerning some parts as a supplement to the PhD thesis of N. Musyoka. The author would like to thank Prof. W. Schwieger for providing the ultrasonic device and DAAD and the German Research Foundation (DFG) for funding. Thanks are also addressed to H. Baser to reflect parts of the results of his PhD thesis. We are also grateful to R. Müller for ICP analysis an gradually acknowledge L. Petrik from the University of the Western Cape, South Africa, for providing the coal fly ash from Eskom used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Hums.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11164_2016_2550_MOESM1_ESM.doc

Fig. 1: XRD patterns of zeolite A obatined at 80, 90 and 94 °C after 360 min using unaged clear solution of fused fly ash., Figure 2: REM image of zeolite A with typical cubic morphology synthesized from templated synthesis mixture exemplarily demonstrated at 95 °C (molar ratio 0.4 Na2O:10 SiO2:1.6 Al2O3:16 (TMA)2O:650 H2O)., Figure 3: XRD patterns of commercial zeolite X and of the synthesized products obtained from clear solution subjected to hydrothermal crystallization after 1 min at 80 °C, after 600 min at 90 °C and after 500 min at 94 °C (slight impurities: S = Sodalite, P = zeolite P) (DOC 322 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hums, E., Baser, H. & Schwieger, W. In situ ultrasonic measurements: a powerful tool to control the synthesis of zeolites from coal fly ash. Res Chem Intermed 42, 7513–7532 (2016). https://doi.org/10.1007/s11164-016-2550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2550-7

Keywords

Navigation