Skip to main content
Log in

Evaluation of phosphate removal capacity of Fe3O4–ZVINPs from aqueous solution: optimization using response surface analysis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The present research aims to optimize the removal of phosphate (PO4 3−) from aqueous solution by Fe3O4 stabilized zero-valent iron nanoparticles (Fe3O4–ZVINPs). A three-factor, three-level, Box–Behnken design combined with response surface methodology was applied to design the experiments, to develop a mathematical model, and for evaluating the individual and also the interactive effects of the operating variables like pH, temperature, and PO4 3− concentration on removal efficiency. The analysis of variance has been used to evaluate the adequacy of the developed mathematical model in order to predict the optimal conditions of independent process variables, and to get maximum removal efficiency. Three-dimensional response surface plots were constructed to visualize the simultaneous interactive effects between two process variables. All three factors had a significant impact on removal of PO4 3−. The predicted value of the model (166.0 mg g−1PO4 3−) was in good agreement with the experimental value (164.92 mg g−1 PO4 3−) under the optimum conditions of temperature 49.2 °C; pH 3.5; and PO4 3− concentration 79.8 mg L−1. The removal of PO4 3− in the presence of environmental matrix (other ions) was also investigated at optimum conditions as predicted by the model. The results suggest that the presence of these ions had no significant effect on PO4 3− removal. In addition, the adsorbed PO4 3− can be effectively desorbed at higher pH of the solution. The findings suggest that removal of PO4 3− from aqueous solution using Fe3O4–ZVINPs can be an effective method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Choi, S.Y. Lee, S.H. Lee, K.B. Lee, D.J. Kim, S.W. Hong, Adsorption of phosphate by amino-functionalized and Co-condensed SBA-15. Water Air Soil Pollut. 223(2012), 2551–2562 (2012)

    Article  CAS  Google Scholar 

  2. T. Almeelbi, A. Bezbaruah, Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanoparticle Res. 14, 1–14 (2012)

    Article  Google Scholar 

  3. G. Zhang, H. Liu, R. Liu, J. Qu, Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. J. Colloid Interface Sci. 335, 168–174 (2009)

    Article  CAS  Google Scholar 

  4. D. Donnert, M. Salecker, Elimination of phosphorous from waste water by crystallization. Environ. Technol. 20, 735–742 (1999)

    Article  CAS  Google Scholar 

  5. E.M. Van Voorthuizen, A. Zwijnenburg, M. Wessling, Nutrient removal by NF and RO membranes in a decentralized sanitation system. Water Res. 39, 3657–3667 (2005)

    Article  Google Scholar 

  6. M. Gouider, N. Mlaik, M. Feki, S. Sayadi, Integrated physicochemical and biological treatment process for fluoride and phosphorus removal from fertilizer plant wastewater. Water Environ. Res. 83, 731–738 (2011)

    Article  CAS  Google Scholar 

  7. D. Mohan, C.U. Jr, Pittman, activated carbons and low cost adsorbents for remediation of tri and hexavalent chromium for water. J. Hazard. Mater. 137, 762–811 (2006)

    Article  CAS  Google Scholar 

  8. V.K. Gupta, I. Ali, Advances in water treatment by adsorption technology. Nat. Protoc. 1, 2661–2667 (2007)

    Article  Google Scholar 

  9. A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Decoloration treatment of a hazardous triarylmethane dye, light green SF (yellowish) by waste material adsorbents. J. Colloid Interface Sci. 342, 518–527 (2010)

    Article  CAS  Google Scholar 

  10. Q. Yue, Y. Zhao, Q. Li, W. Li, B. Gao, S. Han, Y. Qi, H. Yu, Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal. J. Hazard. Mater. 176, 741–748 (2010)

    Article  CAS  Google Scholar 

  11. S. Hussain, H.A. Aziz, M.H. Isa, A. Ahmad, J. Van Leeuwen, L. Zou, S. Beecham, M. Umar, Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination 271, 265–272 (2011)

    Article  CAS  Google Scholar 

  12. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, T. Hirotsu, Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interface Sci. 298, 602–608 (2006)

    Article  CAS  Google Scholar 

  13. X. Lv, J. Xu, G. Jiang, J. Tang, X. Xu, Highly active nanoscale zero-valent iron (nZVI)–Fe3O4 nanocomposites for the removal of chromium (VI) from aqueous solutions. J. Colloid Interface Sci. 369, 460–469 (2012)

    Article  CAS  Google Scholar 

  14. Y. Wu, J. Zhang, Y. Tong, X. Xu, Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles. J. Hazard. Mater. 172, 1640–1645 (2009)

    Article  CAS  Google Scholar 

  15. K.P. Singh, A.K. Singh, S. Gupta, Optimization of nitrate reduction by EDTA catalyzed zero-valent bimetallic nanoparticles in aqueous medium. Environ. Sci. Pollut. Res. 19, 3914–3924 (2012)

    Article  CAS  Google Scholar 

  16. A.K. Singh, K.P. Singh, Response surface optimization of nitrite removal from aqueous solution by Fe3O4 stabilized zero-valent iron nanoparticles using a three-factor, three-level Box–Behnken Design. Res. Chem. Inter. 42, 2247–2265 (2016)

    Article  CAS  Google Scholar 

  17. K.P. Singh, A.K. Singh, S. Gupta, S. Sinha, Optimization of Cr(VI) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach. Desalination 270, 275–284 (2011)

    Article  CAS  Google Scholar 

  18. K.P. Singh, A.K. Singh, S. Gupta, P. Rai, Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environ. Sci. Pollut. Res. 19, 2063–2078 (2012)

    Article  CAS  Google Scholar 

  19. S. Bajpai, S.K. Gupta, A. Dey, M.K. Jha, V. Bajpai, S. Joshi, A. Gupta, Application of central composite design approach for removal of chromium (VI) from aqueous solution using weakly anionic resin: modeling, optimization and study of interactive variables. J. Hazard. Mater. 227–228, 436–444 (2012)

    Article  Google Scholar 

  20. A.R. Khataee, G. Dehghan, Optimization of biological treatment of a dye solution by macroalgae Cladophora sp. using response surface methodology. J. Taiwan Inst. Chem. Eng. 42, 26–33 (2011)

    Article  CAS  Google Scholar 

  21. K.P. Singh, A.K. Singh, U.V. Singh, P. Verma, Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box–Behnken design. Environ. Sci. Pollut. 19, 724–738 (2012)

    Article  CAS  Google Scholar 

  22. X. Lv, Y. Hu, J. Tang, T. Sheng, G. Jiang, X. Xu, Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites. Chem. Eng. J. 218, 55–64 (2013)

  23. D. Wu, Y. Shen, A. Ding, M. Qiu, Q. Yang, S. Zheng, Phosphate removal from aqueous solutions by nanoscale zero-valent iron. Environ. Technol. 34, 2663–2669 (2013)

    Article  CAS  Google Scholar 

  24. S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal. J. Environ. Manag. 91, 2238–2247 (2010)

    Article  CAS  Google Scholar 

  25. J. Hu, I.M.C. Lo, G. Chen, Performance and mechanism of chromate (VI) adsorption by δ-FeOOH-coated maghemite (γ-Fe2O3) nanoparticles. Sep. Pur. Technol. 58, 76–82 (2007)

    Article  CAS  Google Scholar 

  26. R. Chen, C. Zhi, H. Yang, Y. Bando, Z. Zhang, N. Sugiur, D. Golberg, Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J. Colloid Interface Sci. 359, 261–268 (2011)

    Article  CAS  Google Scholar 

  27. M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J. Hazard. Mater. 181, 1039–1050 (2010)

    Article  CAS  Google Scholar 

  28. Q. Wang, S. Snyder, J. Kim, H. Choi, Aqueous ethanol modified nanoscale zero-valent iron in bromate reduction: synthesis, characterization and reactivity. Environ. Sci. Technol. 43, 3292–3299 (2009)

    Article  CAS  Google Scholar 

  29. A. Sowmya, S. Meenakshi, Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads, Desalin. Water Treat. 52(13–15), 2583–2593 (2014)

    Article  CAS  Google Scholar 

  30. B. Pan, J. Wu, B. Pan, L. Lv, W. Zhang, L. Xiao, X. Wang, X. Tao, S. Zheng, Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Res. 43, 4421–4429 (2009)

    Article  CAS  Google Scholar 

  31. A. Rajeswari, A. Amalraj, A, Pius, Removal of phosphate using chitosan–polymer composites. J. Environ. Chem. Eng. 3, 2331–2341 (2015)

    Article  CAS  Google Scholar 

  32. F. Ogata, D. Imai, M. Toda, M. Otani, N. Kawasaki, Adsorption of phosphate ion in aqueous solutions by calcined cobalt hydroxide at different temperatures. J. Environ. Chem. Eng. 3, 1570–1577 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the director, CSIR-Indian Institute of Toxicology Research, Lucknow (India) for his keen interest in this work and for providing the necessary facilities. Arun K. Singh gratefully acknowledges CSIR (Council of Scientific and Industrial Research) for awarding the senior research fellowship to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Singh, K.P. Evaluation of phosphate removal capacity of Fe3O4–ZVINPs from aqueous solution: optimization using response surface analysis. Res Chem Intermed 42, 7397–7415 (2016). https://doi.org/10.1007/s11164-016-2543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2543-6

Keywords

Navigation