Skip to main content

Advertisement

Log in

Syngas production from methane dry reforming over Ni/Al2O3 catalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We evaluated dry reforming of methane in a tubular fixed-bed reactor at various reaction temperatures from 923 to 973 K using different reactant compositions over 10 % Ni/Al2O3 catalyst prepared by a wet impregnation method. Both NiO and NiAl2O4 phases were formed on the catalyst surface during calcination, and the 10 % Ni/Al2O3 catalyst possessed high surface area of 106.36 m2 g−1 with fine metal dispersion. The low activation energy observed for formation of NiAl2O4 phase during calcination indicated strong interaction between the NiO form and the γ-Al2O3 support. The NiO phase was completely reduced to metallic Ni0 form via H2 reduction. The conversions of CO2 and CH4 increased noticeably with increasing CO2 partial pressure, and the H2/CO ratio was always below unity, regardless of reaction conditions. The yield of H2 was enhanced with growing CO2 partial pressure, approaching a highest value of about 70 %. The heterogeneous nature of the deposited carbon was evident from the coexistence of carbon nanofibers and graphitic carbon. In addition, the amount of filamentous carbon appeared to be slightly less than that of graphitic carbon. However, these deposited carbons were completely removed by O2 at below 900 K during temperature-programmed oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M. Ni, D.Y.C. Leung, M.K.H. Leung, Int. J. Hydrogen Energy 32, 3238 (2007)

    Article  CAS  Google Scholar 

  2. H.J. Alves, C.B. Junior, R.R. Niklevicz, E.P. Frigo, M.S. Frigo, C.H. Coimbra-Araujo, Int. J. Hydrogen Energy 38, 5215 (2013)

    Article  CAS  Google Scholar 

  3. A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energy Fuel 19, 2098 (2005)

    Article  CAS  Google Scholar 

  4. J.N. Armor, Appl. Catal. A Gen. 176, 159 (1999)

    Article  CAS  Google Scholar 

  5. V. Arcotumapathy, D.-V.N. Vo, D. Chesterfield, C.T. Tin, A. Siahvashi, F.P. Lucien, A.A. Adesina, Appl. Catal. A Gen. 479, 87 (2014)

    Article  CAS  Google Scholar 

  6. M. Usman, W.M.A. Wan Daud, H.F. Abbas, Renew. Sustain. Energy Rev. 45, 710 (2015)

    Article  CAS  Google Scholar 

  7. D.-V.N. Vo, T.-H. Nguyen, E.M. Kennedy, B.Z. Dlugogorski, A.A. Adesina, Catal. Today 175, 450 (2011)

    Article  CAS  Google Scholar 

  8. M.C.J. Bradford, M.A. Vannice, Catal. Rev. Sci. Eng. 41, 1 (1999)

    Article  CAS  Google Scholar 

  9. I. Tankov, K. Arishtirova, J.M.C. Bueno, S. Damyanova, Appl. Catal. A Gen. 474, 135 (2014)

    Article  CAS  Google Scholar 

  10. S.S. Kim, S.M. Lee, J.M. Won, H.J. Yang, S.C. Hong, Chem. Eng. J. 280, 433 (2015)

    Article  CAS  Google Scholar 

  11. Z. Alipour, M. Rezaei, F. Meshkani, J. Energy Chem. 23, 633 (2014)

    Article  Google Scholar 

  12. S. Sokolov, E.V. Kondratenko, M.-M. Pohl, U. Rodemerck, Int. J. Hydrogen Energy 38, 16121 (2013)

    Article  CAS  Google Scholar 

  13. J. Zhang, F. Li, Appl. Catal. B Environ. 176–177, 513 (2015)

    Article  Google Scholar 

  14. O.-S. Joo, K.-D. Jung, Bull. Korean Chem. Soc. 23, 1149 (2002)

    Article  CAS  Google Scholar 

  15. JCPDS Powder Diffraction File, International Centre for Diffraction Data, Swarthmore (2000)

  16. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  17. H.E. Kissinger, Anal. Chem. 29, 1702 (1957)

    Article  CAS  Google Scholar 

  18. U. Oemar, Y. Kathiraser, L. Mo, X.K. Ho, S. Kawi, Catal. Sci. Technol. (2015). doi:10.1039/C5CY00906E

    Google Scholar 

  19. S.Y. Foo, C.K. Cheng, T.-H. Nguyen, E.M. Kennedy, B.Z. Dlugogorski, A.A. Adesina, Catal. Commun. 26, 183 (2012)

    Article  CAS  Google Scholar 

  20. S.Y. Foo, C.K. Cheng, T.-H. Nguyen, A.A. Adesina, Catal. Today 164, 221 (2011)

    Article  CAS  Google Scholar 

  21. F. Pompeo, D. Gazzoli, N.N. Nichio, Int. J. Hydrogen Energy 34, 2260 (2009)

    Article  CAS  Google Scholar 

  22. F.F. de Sousa, H.S.A. de Sousa, A.C. Oliveira, M.C.C. Junior, A.P. Ayala, E.B. Barros, B.C. Viana, J.M. Filho, A.C. Oliveira, Int. J. Hydrogen Energy 37, 3201 (2012)

    Article  Google Scholar 

  23. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Carbon 40, 2043 (2002)

    Article  CAS  Google Scholar 

  24. W.-W. Liu, S.-P. Chai, A.R. Mohamed, U. Hashim, J. Ind. Eng. Chem. 20, 1171 (2014)

    Article  CAS  Google Scholar 

  25. C. Herrero-Latorre, J. Álvarez-Méndez, J. Barciela-García, S. García-Martín, R.M. Peña-Crecente, Anal. Chim. Acta 853, 77 (2015)

    Article  CAS  Google Scholar 

  26. C. Luo, D. Li, W. Wu, Y. Zhang, C. Pan, RSC Adv. 4, 3090 (2014)

    Article  CAS  Google Scholar 

  27. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, Appl. Phys. Lett. 88, 163106-1 (2006)

    Article  Google Scholar 

  28. C.H. Bartholomew, Appl. Catal. A Gen. 212, 17 (2001)

    Article  CAS  Google Scholar 

  29. A.P.E. York, T.-C. Xiao, M.L.H. Green, Catal. Rev. 49, 511 (2007)

    Article  CAS  Google Scholar 

  30. A. Horváth, G. Stefler, O. Geszti, A. Kienneman, A. Pietraszek, L. Guczi, Catal. Today 169, 102 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the UMP Research Grant Scheme (RDU140374) for financial support of this study. King Abdulaziz City for Science and Technology (KACST) is also acknowledged for conducting H2-TPR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Viet N. Vo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvarajah, K., Phuc, N.H.H., Abdullah, B. et al. Syngas production from methane dry reforming over Ni/Al2O3 catalyst. Res Chem Intermed 42, 269–288 (2016). https://doi.org/10.1007/s11164-015-2395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2395-5

Keywords

Navigation