Research on Chemical Intermediates

, Volume 42, Issue 6, pp 5219–5236 | Cite as

Enhancement of 2-chlorophenol photocatalytic degradation in the presence Co2+-doped ZnO nanoparticles under direct solar radiation

  • Muneer M. Ba-Abbad
  • Mohd S. Takriff
  • Abdul Wahab Mohammad


The performance of Co2+-doped ZnO nanoparticles, prepared using the sol–gel method, for 2-chlorophenol degradation under direct solar radiation was investigated. Various parameters were investigated during the degradation process, namely solar intensity, Co2+ ion concentration, loading concentrations of Co2+-doped ZnO, and pH. The photocatalytic degradation efficiency increased when the initial concentration of 2-chlorophenol decreased; the optimum concentration was 50 mg/L under similar experimental conditions. Moreover, optimum values, established on a sunny day, were 0.75 wt% of Co2+, a 1 g/L loading concentration, and a pH of 6.0, respectively. The highest degradation efficiency observed was 95 %, after only 90 min of solar light irradiation. The mechanism of visible photocatalytic degradation using Co2+-doped ZnO was explained as a strong electronic interaction between Co2+, Co3+ and ZnO, and a promotion in the charge separation, which enhanced the degradation performance. The fragmentation of 2-chlorophenol under the optimal conditions was investigated using HPLC, comparing standards of all intermediate compounds. The pathway of the fragmentation was proposed as involving hydroxyhydroquinone, catechol, and phenol formation, which were then converted to non-toxic compounds such as oxalic acid and acetic acid with further decomposition to CO2 and H2O.


ZnO Nanoparticles Solar 2-Chlorophenol 



The authors wish to thank the Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia for support this study under project iconic-2014-004. Also, one of the authors (M. M. Ba-Abbad) is grateful to the Hadhramout University of Science and Technology, Yemen, for their financial support for his PhD study.


  1. 1.
    H. Roques, Chemical Water Treatment (VCH Verlag, Weinheim, Germany, 1996)Google Scholar
  2. 2.
    K.M. Parida, S. Parija, Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Sol. Energy 80, 1048–1054 (2006)CrossRefGoogle Scholar
  3. 3.
    U. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids (Springer, New York, 2013)Google Scholar
  4. 4.
    M. Czaplicka, Photo-degradation of chlorophenols in the aqueous solution. J. Hazard. Mater. 134, 45–59 (2006)CrossRefGoogle Scholar
  5. 5.
    D.N. Moza, K. Fytianos, V. Samanidou, F. Korte, Photodecomposition of chlorophenols in aqueous medium in presence of hydrogen peroxide. Bull. Environ. Contam. Toxicol. 41, 678–682 (1988)CrossRefGoogle Scholar
  6. 6.
    M.M. Häggblom, D. Janke, M.S. Salkinoja-Salonen, Degradation and transformation of chlorinated phenolic compounds by strain of Rhodococcus and Mycobaterium. Appl. Environ. Microbiol. 555, 16–519 (1989)Google Scholar
  7. 7.
    X.W. Zhang, M.H. Zhou, L.C. Lei, TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon 44, 325–333 (2006)CrossRefGoogle Scholar
  8. 8.
    J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999)CrossRefGoogle Scholar
  9. 9.
    G. Ganapathy Selvam, K. Sivakumar, Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux. Appl. Nanosci. 5, 617–622 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.T. Chung, M.M. Ba-Abbad, A.W. Mohammad, N.H.H. Hairom, A. Benamor, Synthesis of minimal-size ZnO nanoparticles through sol–gel method: Taguchi design optimisation. Mater. Des. 87, 780–787 (2015)Google Scholar
  11. 11.
    E. Mahmoudi, L.Y. Ng, M.M. Ba-Abbad, A.W. Mohammad, Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem. Eng. J. 277, 1–10 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Shafaei, M. Nikaza, M. Arami, Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: comparative study. Desalin. 252, 8–16 (2010)CrossRefGoogle Scholar
  13. 13.
    M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. B 133, 226–232 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Sakthivel, H. Kish, Photocatalytic and photoelectrochemical properties of N-doped titanium dioxide. Chem. Phys. Chem. 4, 487–490 (2003)Google Scholar
  15. 15.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.A. Al-Amiery, A.B. Mohamad, M.S. Takriff, Toxicity evaluation for low concentration of chlorophenols under solar radiation using zinc oxide (ZnO) nanoparticles. Int. J. Phys. Sci. 7, 48–52 (2012)Google Scholar
  16. 16.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 7, 4871–4888 (2012)Google Scholar
  17. 17.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, R.T.T. Jalgham, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 7, 11363–11376 (2012)Google Scholar
  18. 18.
    J. Huo, L. Fang, Y. Lei, G. Zeng, H, Zeng, Facile preparation of yttrium and aluminum codoped ZnO via a sol-gel route for photocatalytic hydrogen production. J. Mater. Chem A. 2, 11040–11044 (2014)CrossRefGoogle Scholar
  19. 19.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticles prepared via sol–gel technique. Chemosphere 91, 1604–1611 (2013)CrossRefGoogle Scholar
  20. 20.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique. J. Alloys Compd. 550, 63–70 (2013)CrossRefGoogle Scholar
  21. 21.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol–gel technique. J. Ind. Eng. Chem. 19, 99–105 (2013)CrossRefGoogle Scholar
  22. 22.
    M. Ram, E.S. Andreescu, D. Hanming, Nanotechnology for Environmental Decontamination (McGraw Hill Professional, New York, 2011)Google Scholar
  23. 23.
    S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J. Environ. Manage. 92, 311–330 (2011)CrossRefGoogle Scholar
  24. 24.
    R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Haza. Mater. 156, 194–200 (2008)CrossRefGoogle Scholar
  25. 25.
    Q. Xiao, J. Zhang, C. Xiao, X. Tan, Photocatalytic decolorization of methylene blue over Zn1 − xCoxO under visible light irradiation. Mater. Sci. Eng. B 142, 121–125 (2007)CrossRefGoogle Scholar
  26. 26.
    K.S. Yu, J.Y. Shi, Z.L. Zhang, Y.M. Liang, W. Liu, Synthesis, characterization, and photocatalysis of ZnO and Er-doped ZnO. J. Nanomater. 2013, 372951–372956 (2013)Google Scholar
  27. 27.
    M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 65, 1797–1800 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Zhou, J. Yu, B. Cheng, Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard. Mater. 137, 1838–1847 (2006)CrossRefGoogle Scholar
  29. 29.
    U.I. Gaya, A.H. Abdullah, M.Z. Hussein, Z. Zainal, Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder. Desalin 263, 176–182 (2010)CrossRefGoogle Scholar
  30. 30.
    E. Evgenidou, K. Fytianos, I. Poulios, Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl. Catal. B 59, 81–89 (2005)CrossRefGoogle Scholar
  31. 31.
    Z.M. El-Bahyb, A.A. Ismaila, R.M. Mohamed, Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J. Hazard. Mater. 166, 138–143 (2009)CrossRefGoogle Scholar
  32. 32.
    M.A. Behnajady, N. Modirshala, R. Hamazavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard Mat. 133, 226–232 (2006)CrossRefGoogle Scholar
  33. 33.
    C. Karunakaran, R. Dhanalakshmi, Semiconductor-catalyzed degradation of phenols with sunlight. Sol. Energy Mater. Sol. Cells 92, 1315–1321 (2008)CrossRefGoogle Scholar
  34. 34.
    M.M. Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Structural and frequency dependent dielectric properties of Fe3+doped ZnO nanoparticles. Mater. Res. Bull. 47, 3952–3958 (2012)CrossRefGoogle Scholar
  35. 35.
    C.H. Patterson, Role of defects in ferromagnetism in Zn1−xCoxO: a hybrid density-functional study. Matter. Mater. Phys. 74, 144432–144435 (2006)CrossRefGoogle Scholar
  36. 36.
    N.N. Rao, A.K. Dubey, S. Mohanty, P. Khare, R. Jain, S.N. Kaul, Photocatalytic degradation of 2-chlorophenol: a study of kinetics. Intermediates and biodegradability. J. Hazard. Mater. 101, 301–314 (2003)CrossRefGoogle Scholar
  37. 37.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Photocatalytic degradation of chlorophenols under direct solar radiation in the presence of ZnO catalyst. Res. Chem. Intermed. 39, 1981–1996 (2013)CrossRefGoogle Scholar
  38. 38.
    E.R. Bandala, C.A. Arancibia-Bulnes, S.L. Orozco, C.A. Estrada, Solar photoreactors comparison based on oxalic acid photocatalytic degradation. Sol. Energy 77, 503–512 (2004)CrossRefGoogle Scholar
  39. 39.
    T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. Meng, S. Lin, X. Wang, M. Wang, Z. Ji, J.I. Zink, L. Mädler, V. Castranova, S. Lin, A.E. Nel, Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano. 5, 1223–12235 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Muneer M. Ba-Abbad
    • 1
    • 2
  • Mohd S. Takriff
    • 1
    • 2
  • Abdul Wahab Mohammad
    • 1
    • 2
  1. 1.Research Centre for Sustainable Process Technology, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Department of Chemical Engineering, Faculty of Engineering and PetroleumHadhramout University of Science and TechnologyMukallaYemen

Personalised recommendations