Skip to main content
Log in

Enhancement of 2-chlorophenol photocatalytic degradation in the presence Co2+-doped ZnO nanoparticles under direct solar radiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The performance of Co2+-doped ZnO nanoparticles, prepared using the sol–gel method, for 2-chlorophenol degradation under direct solar radiation was investigated. Various parameters were investigated during the degradation process, namely solar intensity, Co2+ ion concentration, loading concentrations of Co2+-doped ZnO, and pH. The photocatalytic degradation efficiency increased when the initial concentration of 2-chlorophenol decreased; the optimum concentration was 50 mg/L under similar experimental conditions. Moreover, optimum values, established on a sunny day, were 0.75 wt% of Co2+, a 1 g/L loading concentration, and a pH of 6.0, respectively. The highest degradation efficiency observed was 95 %, after only 90 min of solar light irradiation. The mechanism of visible photocatalytic degradation using Co2+-doped ZnO was explained as a strong electronic interaction between Co2+, Co3+ and ZnO, and a promotion in the charge separation, which enhanced the degradation performance. The fragmentation of 2-chlorophenol under the optimal conditions was investigated using HPLC, comparing standards of all intermediate compounds. The pathway of the fragmentation was proposed as involving hydroxyhydroquinone, catechol, and phenol formation, which were then converted to non-toxic compounds such as oxalic acid and acetic acid with further decomposition to CO2 and H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Roques, Chemical Water Treatment (VCH Verlag, Weinheim, Germany, 1996)

    Google Scholar 

  2. K.M. Parida, S. Parija, Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Sol. Energy 80, 1048–1054 (2006)

    Article  CAS  Google Scholar 

  3. U. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids (Springer, New York, 2013)

    Google Scholar 

  4. M. Czaplicka, Photo-degradation of chlorophenols in the aqueous solution. J. Hazard. Mater. 134, 45–59 (2006)

    Article  CAS  Google Scholar 

  5. D.N. Moza, K. Fytianos, V. Samanidou, F. Korte, Photodecomposition of chlorophenols in aqueous medium in presence of hydrogen peroxide. Bull. Environ. Contam. Toxicol. 41, 678–682 (1988)

    Article  CAS  Google Scholar 

  6. M.M. Häggblom, D. Janke, M.S. Salkinoja-Salonen, Degradation and transformation of chlorinated phenolic compounds by strain of Rhodococcus and Mycobaterium. Appl. Environ. Microbiol. 555, 16–519 (1989)

    Google Scholar 

  7. X.W. Zhang, M.H. Zhou, L.C. Lei, TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon 44, 325–333 (2006)

    Article  CAS  Google Scholar 

  8. J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999)

    Article  CAS  Google Scholar 

  9. G. Ganapathy Selvam, K. Sivakumar, Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux. Appl. Nanosci. 5, 617–622 (2015)

    Article  CAS  Google Scholar 

  10. Y.T. Chung, M.M. Ba-Abbad, A.W. Mohammad, N.H.H. Hairom, A. Benamor, Synthesis of minimal-size ZnO nanoparticles through sol–gel method: Taguchi design optimisation. Mater. Des. 87, 780–787 (2015)

    CAS  Google Scholar 

  11. E. Mahmoudi, L.Y. Ng, M.M. Ba-Abbad, A.W. Mohammad, Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem. Eng. J. 277, 1–10 (2015)

    Article  CAS  Google Scholar 

  12. A. Shafaei, M. Nikaza, M. Arami, Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: comparative study. Desalin. 252, 8–16 (2010)

    Article  CAS  Google Scholar 

  13. M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. B 133, 226–232 (2006)

    Article  CAS  Google Scholar 

  14. S. Sakthivel, H. Kish, Photocatalytic and photoelectrochemical properties of N-doped titanium dioxide. Chem. Phys. Chem. 4, 487–490 (2003)

    CAS  Google Scholar 

  15. M.M. Ba-Abbad, A.A.H. Kadhum, A.A. Al-Amiery, A.B. Mohamad, M.S. Takriff, Toxicity evaluation for low concentration of chlorophenols under solar radiation using zinc oxide (ZnO) nanoparticles. Int. J. Phys. Sci. 7, 48–52 (2012)

    CAS  Google Scholar 

  16. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 7, 4871–4888 (2012)

    CAS  Google Scholar 

  17. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, R.T.T. Jalgham, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 7, 11363–11376 (2012)

    CAS  Google Scholar 

  18. J. Huo, L. Fang, Y. Lei, G. Zeng, H, Zeng, Facile preparation of yttrium and aluminum codoped ZnO via a sol-gel route for photocatalytic hydrogen production. J. Mater. Chem A. 2, 11040–11044 (2014)

    Article  CAS  Google Scholar 

  19. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticles prepared via sol–gel technique. Chemosphere 91, 1604–1611 (2013)

    Article  CAS  Google Scholar 

  20. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique. J. Alloys Compd. 550, 63–70 (2013)

    Article  CAS  Google Scholar 

  21. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol–gel technique. J. Ind. Eng. Chem. 19, 99–105 (2013)

    Article  CAS  Google Scholar 

  22. M. Ram, E.S. Andreescu, D. Hanming, Nanotechnology for Environmental Decontamination (McGraw Hill Professional, New York, 2011)

    Google Scholar 

  23. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J. Environ. Manage. 92, 311–330 (2011)

    Article  CAS  Google Scholar 

  24. R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Haza. Mater. 156, 194–200 (2008)

    Article  CAS  Google Scholar 

  25. Q. Xiao, J. Zhang, C. Xiao, X. Tan, Photocatalytic decolorization of methylene blue over Zn1 − xCoxO under visible light irradiation. Mater. Sci. Eng. B 142, 121–125 (2007)

    Article  CAS  Google Scholar 

  26. K.S. Yu, J.Y. Shi, Z.L. Zhang, Y.M. Liang, W. Liu, Synthesis, characterization, and photocatalysis of ZnO and Er-doped ZnO. J. Nanomater. 2013, 372951–372956 (2013)

    Google Scholar 

  27. M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 65, 1797–1800 (2011)

    Article  CAS  Google Scholar 

  28. M. Zhou, J. Yu, B. Cheng, Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard. Mater. 137, 1838–1847 (2006)

    Article  CAS  Google Scholar 

  29. U.I. Gaya, A.H. Abdullah, M.Z. Hussein, Z. Zainal, Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder. Desalin 263, 176–182 (2010)

    Article  CAS  Google Scholar 

  30. E. Evgenidou, K. Fytianos, I. Poulios, Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl. Catal. B 59, 81–89 (2005)

    Article  CAS  Google Scholar 

  31. Z.M. El-Bahyb, A.A. Ismaila, R.M. Mohamed, Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J. Hazard. Mater. 166, 138–143 (2009)

    Article  Google Scholar 

  32. M.A. Behnajady, N. Modirshala, R. Hamazavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard Mat. 133, 226–232 (2006)

    Article  CAS  Google Scholar 

  33. C. Karunakaran, R. Dhanalakshmi, Semiconductor-catalyzed degradation of phenols with sunlight. Sol. Energy Mater. Sol. Cells 92, 1315–1321 (2008)

    Article  CAS  Google Scholar 

  34. M.M. Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Structural and frequency dependent dielectric properties of Fe3+doped ZnO nanoparticles. Mater. Res. Bull. 47, 3952–3958 (2012)

    Article  Google Scholar 

  35. C.H. Patterson, Role of defects in ferromagnetism in Zn1−xCoxO: a hybrid density-functional study. Matter. Mater. Phys. 74, 144432–144435 (2006)

    Article  Google Scholar 

  36. N.N. Rao, A.K. Dubey, S. Mohanty, P. Khare, R. Jain, S.N. Kaul, Photocatalytic degradation of 2-chlorophenol: a study of kinetics. Intermediates and biodegradability. J. Hazard. Mater. 101, 301–314 (2003)

    Article  CAS  Google Scholar 

  37. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Photocatalytic degradation of chlorophenols under direct solar radiation in the presence of ZnO catalyst. Res. Chem. Intermed. 39, 1981–1996 (2013)

    Article  CAS  Google Scholar 

  38. E.R. Bandala, C.A. Arancibia-Bulnes, S.L. Orozco, C.A. Estrada, Solar photoreactors comparison based on oxalic acid photocatalytic degradation. Sol. Energy 77, 503–512 (2004)

    Article  CAS  Google Scholar 

  39. T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. Meng, S. Lin, X. Wang, M. Wang, Z. Ji, J.I. Zink, L. Mädler, V. Castranova, S. Lin, A.E. Nel, Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano. 5, 1223–12235 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia for support this study under project iconic-2014-004. Also, one of the authors (M. M. Ba-Abbad) is grateful to the Hadhramout University of Science and Technology, Yemen, for their financial support for his PhD study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneer M. Ba-Abbad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba-Abbad, M.M., Takriff, M.S. & Mohammad, A.W. Enhancement of 2-chlorophenol photocatalytic degradation in the presence Co2+-doped ZnO nanoparticles under direct solar radiation. Res Chem Intermed 42, 5219–5236 (2016). https://doi.org/10.1007/s11164-015-2352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2352-3

Keywords

Navigation